Home
Grupo de investigación BISITE
  • EN EN
  • ES ES
University of Salamanca
  • Who are we?
  • Group
    • Team
    • Laboratories
    • Blog
  • R&D+i
    • Research Lines
    • Projects
      • Internationals
      • Nationals
      • Companies
      • Regionals
      • Educational innovation
      • Thematic networks
    • Publications
      • Journals
      • Books
      • Book chapters
      • Conferences
    • Technology Transfer
      • Partners
      • Platforms
  • Training
    • Masters
      • Master in 3D Printing
      • Master in Blockchain and Smart Contracts
      • Master in Digital Animation
      • Master in Digital Transformation
      • Master in Internet Security
      • Master in Smart Cities & Intelligent Buildings
      • Máster in the Internet of Things
      • Recursos TIC en el proceso de Enseñanza-Aprendizaje
    • Experts
      • Expert in 3D Printing
      • Expert in Blockchain and Smart Contracts
      • Expert in Digital Animation
      • Expert in Digital Transformation
      • Expert in Internet Security
      • Expert in Smart Cities & Intelligent Buildings
      • Expert in the Internet of Things
      • Experto en Gestión Laboral
      • Experto en Pericia Documental
    • MOOCs e4YOU
    • Campus-BISITE
  • Conferences
  • BISITE
  • Technology Transfer
  • APPS

Smart location systems

  • Information
  • Gallery
  • Publications

Indoor location is currently the subject of intensive research. The main goal of researchers is to obtain a functional system capable of locating, identifying and guiding, as precisely as possible and in real time. To date, no solution has been able to achieve a location-navigation system as precise and successful as those developed in analogous research such as outdoor location. The main characteristic of a real time positioning system is to know the precise position of an object or individual within a building, which would make it possible to develop and offer a vast set of services, most notably those that aim to control access through the identification of users, security based on physical location, and applications that pursue a statistical objective or installation management.

The main reason for not having yet achieved this milestone is primarily due to technical issues and, to a greater extent, financial reasons. A GPS system simply requires a physical device that is connected in an open space to a finite number of satellites. On the other hand, a closed space requires the use of an existing infrastructure with a large number of stationary devices that act as beacons, which results in a high cost solution.

Due to the need of improving the accuracy and reducing cost in indoor location system, the research group has developed a hybrid location system with a multi-agent system that uses electromagnetic fields and different types of sensors to track elements such as people or devices.

Specifically, the proposed system has solved the problem to estimating the probabilities of belonging to the points previously scanned in the intensity maps. The intensity maps obtained indoors are created using some parameters. Each of the them contains the information of electromagnetic fields such as: Wi-Fi, GSM, GPRS, RFID, Bluetooth, ZigBee networks scanned in that moment and identified by a coordinate (x,y). The rows can contain more or less columns depending on the scanned intensities.

The deployment of these applications tends to take place in indoor locations such as hospitals, manufacturing plants, large warehouses or even with complementary systems such as GPS (Global Positioning System).

The system may display heat maps, locate in real time users and devices and set different alarms depending on their location. In addition, the system allows detecting anomalous routes by defining graphs using the information of previous routes of users and devices.

Some applications of this technology are:

  • Locate staff in hospitals, staff of surveillance and security.
  • Locate expensive devices.
  • Guidance in shopping malls, monuments and large building.

IMAGES


VIDEOS

Juan M. Corchado, Javier Bajo, Juan F. De Paz and Sara Rodríguez (20092009). An execution time neural-CBR guidance assistant. Neurocomputing. Volume 72 (13-15), pp. 2743-2753. Elsevier BV.

JCR (2009): 1,440
J.M. Corchado, J. Bajo, D.I. Tapia and A. Abraham (20102010). Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare. IEEE Trans. Inform. Technol. Biomed.. Volume 14 (2), pp. 234-240. Institute of Electrical & Electronics Engineers (IEEE).

JCR (2010): 1.707

Follow us


Links of interest

Contact

  • Edificio Multiusos I+D+i:
    Calle Espejo s/n, 37007, Salamanca, Spain

     

  • Phone: (+34) 923 294 400 ext. 1525
  • Fax: (+34) 923 294 514
  • Email: bisite@usal.es

Bisite Research Group

© Copyright 2021 | BISITE Research Group

  • Sitemap
  • Graphic Identity
If you continue browsing this website, you agree to our policies.
I agree to the site policies and terms of use
View policies