
Developing a Service Oriented Alternative for
Distributed Multi-Agent Systems

Dante I. Tapia, Juan F. de Paz, Sara Rodríguez, Javier Bajo and Juan M. Corchado

Departamento Informática y Automática

Universidad de Salamanca
Plaza de la Merced s/n, 37008, Salamanca, Spain

{dantetapia; fcofds; srg; jbajope; corchado}@usal.es

Abstract. This paper presents a service oriented architecture approach that has
enhanced the performance of a multi-agent system aimed at enhancing the
assistance and health care for Alzheimer patients living in geriatric residences.
The proposed architecture allows a more efficient distribution of the daily
activities in the multi-agent system. The results obtained after testing the
architecture in a real health care scenario demonstrate that the ALZ-MAS 2.0
based on the service oriented approach is far more robust and has better
performance than the previous version of this system.

Keywords: Multi-agent Systems, Services Oriented Architectures, Case-Based
Reasoning, Case-Based Planning, Health Care.

1 Introduction

The continuous growth of the Internet requires frameworks for web application
integration [12]. Web applications are executed in distributed environments, and each
part that composes the program can be located in a different machine. The absence of
a strategy for integrating applications generates multiple points of failure that can
affect the systems’ performance. Some of the technologies that have acquired a
relevant paper in the web during the last years are the multi-agent systems and the
SOA architectures. This work describes a novel architecture for developing multi-
agent systems and explains how it has been designed and applied to a real scenario.
The architecture presents important improvements in the vision of the integration of
web applications. One of the most important characteristics is the use of intelligent
agents as the main components in employing a service oriented approach, focusing on
distributing the majority of the systems’ functionalities into remote and local services
and applications. The architecture proposes a new and easier method of building
distributed multi-agent systems, where the functionalities of the systems are not
integrated into the structure of the agents, rather they are modelled as distributed
services which are invoked by the agents acting as controllers and coordinators.

Agents have a set of characteristics, such as autonomy, reasoning, reactivity, social
abilities, pro-activity, mobility, organization, etc. which allow them to cover several
needs for highly dynamic environments. Agent and multi-agent systems have been

successfully applied to several scenarios, such as education, culture, entertainment,
medicine, robotics, etc. [7]. The characteristics of the agents make them appropriate
for developing dynamic and distributed systems, as they possess the capability of
adapting themselves to the users and environmental characteristics [9]. Most of the
agents are based on the deliberative Belief, Desire, Intention (BDI) model [15], where
the agents’ internal structure and capabilities are based on mental aptitudes, using
beliefs, desires and intentions [3]. Nevertheless, complex systems need higher
adaptation, learning and autonomy levels than pure BDI model [3]. This is achieved
by modelling the agents’ characteristics [15] to provide them with mechanisms that
allow solving complex problems and autonomous learning. Some of these
mechanisms are Case-Based Reasoning (CBR) [1] and Case-Based Planning (CBP),
where problems are solved by using solutions to similar past problems [6] [7].
Solutions are stored into a case memory, which the mechanisms can consult in order
to find better solutions for new problems. CBR and CBP mechanisms have been
modelled as external services. Deliberative agents use these services to learn from
past experiences and to adapt their behaviour according the context.

This paper briefly describes the FUSION@ architecture, a service oriented
alternative for distributed multi-agent systems and ALZ-MAS 2.0, a multi-agent
system aimed at enhancing the assistance and health care for Alzheimer patients
living in geriatric residences. ALZ-MAS 2.0 is based on FUSION@ and implements a
services oriented approach, where functionalities, including CBR and CBP
mechanisms, are not integrated into the structure of the agents, rather they are
modelled as distributed services and applications which are invoked by the agents.

In the next section, the problem description that motivated this work is presented.
Section 3 briefly presents the FUSION@ architecture. Section 4 describes the basic
components of ALZ-MAS 2.0 and shows how a CBP mechanism has been modelled
for distributing resources. Finally Section 5 presents the results and conclusions
obtained in this work.

2 Problem Description

Excessive centralization of services negatively affects the systems’ functionalities,
overcharging or limiting their capabilities. Classical functional architectures are
characterized by trying to find modularity and a structure oriented to the system itself.
Modern functional architectures like Service-Oriented Architecture (SOA) consider
integration and performance aspects that must be taken into account when
functionalities are created outside the system. These architectures are aimed at the
interoperability between different systems, distribution of resources, and the lack of
dependency of programming languages [5]. Services are linked by means of standard
communication protocols that must be used by applications in order to share resources
in the services network [2]. The compatibility and management of messages that the
services generate to provide their functionalities is an important and complex element
in any of these approaches.

One of the most prevalent alternatives to these architectures is the multi-agent
systems technology which can help to distribute resources and reduce the central unit

tasks [2]. A distributed agents-based architecture provides more flexible ways to
move functions to where actions are needed, thus obtaining better responses at
execution time, autonomy, services continuity, and superior levels of flexibility and
scalability than centralized architectures [4]. Additionally, the programming effort is
reduced because the agents cooperate in solving problems and reaching specific goals,
thus giving the systems the ability to generate knowledge and experience.

Agent and multi-agent systems combine classical and modern functional
architecture aspects. Multi-agent systems are structured by taking into account the
modularity in the system, and by reuse, integration and performance. Nevertheless,
integration is not always achieved because of the incompatibility among the agents’
platforms. The integration and interoperability of agents and multi-agent systems with
SOA and Web Services approaches has been recently explored [2]. Some
developments are centred on communication between these models, while others are
centred on the integration of distributed services, especially Web Services, into the
structure of the agents [13] [14] [10] [11]. Although these developments provide an
adequate background for developing distributed multi-agent systems integrating a
service oriented approach, most of them are in early stages of development, so it is
not possible to actually know their potential in real scenarios.

3 The FUSION@ Architecture

The development of AmI-based software requires creating increasingly complex and
flexible applications, so there is a trend toward reusing resources and share
compatible platforms or architectures. In some cases, applications require similar
functionalities already implemented into other systems which are not always
compatible. At this point, developers can face this problem through two options: reuse
functionalities already implemented into other systems; or re-deploy the capabilities
required, which means more time for development, although this is the easiest and
safest option in most cases. While the first option is more adequate in the long run,
the second one is most chosen by developers, which leads to have replicated
functionalities as well as greater difficulty in migrating systems and applications. This
is a poorly scalable and flexible model with reduced response to change, in which
applications are designed from the outset as independent software islands.

FUSION@ has been designed to facilitate the development of distributed multi-
agent systems with high levels of human-system-environment interaction, since
agents have the ability to dynamically adapt their behaviour at execution time. It also
provides an advanced flexibility and customization to easily add, modify or remove
applications or services on demand, independently of the programming language.
FUSION@ formalizes four basic blocks: Applications, which represent all the
programs that can be used to exploit the system functionalities. They can be executed
locally or remotely, even on mobile devices with limited processing capabilities,
because computing tasks are largely delegated to the agents and services; An Agents
Platform as the core of FUSION@, integrating a set of agents, each one with special
characteristics and behaviour. These agents act as controllers and administrators for
all applications and services, managing the adequate functioning of the system, from

services, applications, communication and performance to reasoning and decision-
making; Services, which are the bulk of the functionalities of the system at the
processing, delivery and information acquisition levels. Services are designed to be
invoked locally or remotely; and finally a Communication Protocol which allows
applications and services to communicate directly with the Agents Platform. The
protocol is based on SOAP specification and it is completely open and independent of
any programming language [5].

These blocks are managed by means of pre-defined agents which provide the basic
functionalities of FUSION@: CommApp Agent is responsible for all communications
between applications and the platform; CommServ Agent is responsible for all
communications between services and the platform; Directory Agent manages the list
of services that can be used by the system; Supervisor Agent supervises the correct
functioning of the other agents in the system; Security Agent analyzes the structure
and syntax of all incoming and outgoing messages; Manager Agent decides which
agent must be called by taking into account the services performance and users
preferences; Interface Agents are designed to be embedded in users’ applications.
Interface agents communicate directly with the agents in FUSION@ so there is no
need to employ the communication protocol, rather the FIPA ACL specification.

FUSION@ also facilitates the inclusion of context-aware technologies that allow
systems to automatically obtain information from users and the environment in an
evenly distributed way, focusing on the characteristics of ubiquity, awareness,
intelligence, mobility, etc. The goal in FUSION@ is not only to distribute services
and applications, but to also promote a new way of developing systems focusing on
ubiquity and simplicity. An example of a service in FUSION@ can be observed in
Figure 1.

Fig. 1. ReadCHIP: An example of service in FUSION@.

Figure 1 shows the readCHIP service. This service has been implemented to
facilitate indoor location based on RFID technology. When a RFID reader detects the
presence of a chip, the readCHIP service is automatically invoked. The inputs
considered for this service consists of the device identification, the type of device, and
the location of the device. At this moment the service checks the type of CHIP and
calculates the location information, that is, the identification for the chip, the user

identification and the coordinates which determine the physical position. This
information is then sent to the Devices Agent in order to be automatically processed.

In the next section, ALZ-MAS 2.0 is presented, where FUSION@ has helped to
distribute most of its functionalities and re-design a completely functional multi-agent
system aimed at improving several aspects of dependent people.

4 ALZ-MAS 2.0

ALZ-MAS 2.0 is an improved version of ALZ-MAS (ALZheimer Multi-Agent
System) [6] [7], a multi-agent system aimed at enhancing the assistance and health
care for Alzheimer patients living in geriatric residences. The main functionalities in
the system are managed by deliberative BDI agents, including Case-Based Reasoning
(CBR) and Case-Based Planning (CBP) mechanisms.

ALZ-MAS structure has five different deliberative agents based on the BDI model
(BDI Agents), each one with specific roles and capabilities:
- User Agent. This agent manages the users’ personal data and behaviour

(monitoring, location, daily tasks, and anomalies). The User Agent beliefs and
goals applied to every user depend on the plan or plans defined by the super-users.

- SuperUser Agent. This agent inserts new tasks into the Manager Agent to be
processed by a CBR and CBP mechanisms.

- ScheduleUser Agent. It is a BDI agent with a CBP mechanism embedded in its
structure. It schedules the users’ daily activities and obtains dynamic plans
depending on the tasks needed for each user. There is one ScheduleUser Agents for
each nurse connected to the system.

- Admin Agent. It runs on a Workstation and plays two roles: the security role that
monitors the users’ location and physical building status (temperature, lights,
alarms, etc.) through continuous communication with the Devices Agent; and the
manager role that handles the databases and the task assignment.

- Devices Agent. This agent controls all the hardware devices. It monitors the users’
location (continuously obtaining/updating data from sensors), interacts with
sensors and actuators to receive information and control physical services (wireless
devices status, communication, temperature, lights, door locks, alarms, etc.).
In the initial version of ALZ-MAS, each agent integrated its own functionalities

into their structure. If an agent needs to perform a task which involves another agent,
it must communicate with that agent to request it. So, if the agent is disengaged, all its
functionalities will be unavailable to the rest of agents. This has been an important
issue in ALZ-MAS, since agents running on PDAs are constantly disconnecting from
the platform and consequently crashing, making it necessary to restart (killing and
launching new instances) those agents. Another important issue is that the CBR and
CBP mechanisms are integrated into the agents. These mechanisms are busy almost
all the time, overloading the respective agents. Because CBR and CBP mechanisms
are the core of the system, they must be available at all times. The system depends on
these mechanisms to generate all decisions, so it is essential that they have all
processing power available in order to increase overall performance. In addition, the
use of CBR and CBP mechanisms into deliberative BDI agents makes these agents

complex and unable to be executed on mobile devices. In ALZ-MAS 2.0, these
mechanisms have been modelled as services to distribute resources.

The entire ALZ-MAS structure has been modified, separating most of the agents’
functionalities from those to be modelled as services. However, all functionalities are
the same in both approaches, since we have considered it appropriated to compare the
performance of both systems in identical conditions. As an example showing the
differences between both approaches, the next sub-section describes the CBP
mechanism that has been extracted from the ScheduleUser Agent structure and
modelled as a service.

As seen on Figure 2, the entire ALZ-MAS structure has been modified according
to FUSION@ model, separating most of the agents’ functionalities from those to be
modelled as services. However, all functionalities are the same in both approaches,
since we have considered it appropriated to compare the performance of both systems
to prove the efficiency of FUSION@ model.

Lo
ca

l
R

em
ot

e

Fig. 2. ALZ-MAS 2.0 basic structure

4.1 A Case-Based Planning Mechanism for Scheduling Daily Activities

As previously mentioned, some agents in ALZ-MAS integrate CBR and CBP
mechanisms (then modelled as services in ALZ-MAS 2.0), which allow them to make
use of past experiences to create better plans and achieve their goals. These
mechanisms provide the agents greater learning and adaptation capabilities. The main
characteristics of the CBP mechanism are described in the remainder of this section.

Case-Based Reasoning (CBR) is a type of reasoning based on past experiences [1].
CBR solve new problems by adapting solutions that have been used to solve similar
problems in the past, and learn from each new experience. The primary concept when
working with CBR is the concept of case, which is described as a past experience
composed of three elements: an initial state or problem description that is represented
as a belief; a solution, which provides the sequence of actions carried out in order to
solve the problem; and a final state, which is represented as a set of goals. CBR
manages cases (past experiences) to solve new problems. The way cases are managed

is known as the CBR cycle, and consists of four sequential phases: retrieve, reuse,
revise and retain. The retrieve phase starts when a new problem description is
received. Similarity algorithms are applied so that the cases with the problem
description most similar to the current one can be retrieved from the cases memory.
Once the most similar cases have been retrieved, the reuse phase begins by adapting
the solutions for the retrieved cases in order to obtain the best solution for the current
case. The revise phase consists of an expert revision of the proposed solution. Finally,
the retain phase allows the system to learn from the experiences obtained in the three
previous phases, and consequently updates the cases memory.

CBP comes from CBR, but is specially designed to generate plans (sequence of
actions) [6] [7]. In CBP, the proposed solution for solving a given problem is a plan.
This solution is generated by taking into account the plans applied for solving similar
problems in the past. The problems and their corresponding plans are stored in a plans
memory. The reasoning mechanism generates plans using past experiences and
planning strategies, which is how the concept of Case-Based Planning is obtained [7].
CBP consists of four sequential stages: the retrieve stage, which recovers the past
experiences most similar to the current one; the reuse stage, which combines the
retrieved solutions in order to obtain a new optimal solution; the revise stage, which
evaluates the obtained solution; and retain stage, which learns from the new
experience. Problem description (initial state) and solution (situation when final state
is achieved) are represented as beliefs, the final state as a goal (or set of goals), and
the sequences of actions as plans. The CBP cycle is implemented through goals and
plans. When the goal corresponding to one of the stages is triggered, different plans
(algorithms) can be executed concurrently to achieve the goal or objective. Each plan
can trigger new sub-goals and, consequently, cause the execution of new plans. In
practice, what is stored is not only a specific problem with a specific solution, but also
additional information about how the plans have been derived. As with CBR, the case
representation, the plans memory organization, and the algorithms used in every stage
of the CBP cycle are essential in defining an efficient planner.

In the initial version of ALZ-MAS, the CBR and CBP mechanisms are deeply
integrated into the agents’ structure. In ALZ-MAS 2.0, these mechanisms have been
modelled as services linked to agents, thus increasing the system’s overall
performance. To generate a new plan, a ScheduleUser Agent (running on a PDA)
sends a request to the platform. The message is processed and the platform invokes
the mechanism (or service). The mechanism receives the message and starts to
generate a new plan. Then, the solution is sent to the platform which delivers the new
plan to all ScheduleUser Agents running. The CBP service creates optimal paths and
scheduling in order to facilitate the completion of all tasks defined for the nurses
connected to the system [7].

5 Results and Conclusions

The integration of web applications plays an important role in the advance of the
internet. This paper has presented the FUSION@ architecture, which proposes a
novel approach for integrating: applications, agents and services. FUSION@

facilitates the inclusion of context-aware technologies that allow systems to
automatically obtain information from users and the environment in an evenly
distributed way. The proposed architecture has been used to develop the ALZ-MAS
2.0 system, a variation of the previous ALZ-MAS system, which models the CBP-
BDI and CBR-BDI mechanisms as services. The performance of ALZ-MAS 2.0 has
been highly improved.

Several tests have been done to demonstrate if a SOA approach is appropriate to
distribute resources and optimize the performance of multi-agent systems, in this case
ALZ-MAS 2.0. The tests consisted of a set of requests delivered to the CBP
mechanism which in turn had to generate paths for each set of tasks (i.e. scheduling).
For every new test, the cases memory of the CBP mechanism was deleted in order to
avoid a learning capability, thus requiring the mechanism to accomplish the entire
planning process. A task is a java object that contains a set of parameters (TaskId,
MinTime, MaxTime, ScheduleTime, UserId, location, etc.). ScheduleTime is the time
in which a specific task must be accomplished, although the priority level of other
tasks needing to be accomplished at the same time is factored in. The CBP
mechanism increases or decreases ScheduleTime and MaxTime according to the
priority of the task: ScheduleTime = ScheduleTime-5min*TaskPriority and MaxTime
= MaxTime+5min*TaskPriority. Once these times have been calculated, the path is
generated taking the RoomCoordinates into account. There were 30 defined agendas
each with 50 tasks. Tasks had different priorities and orders on each agenda. Tests
were carried out on 7 different test groups, with 1, 5, 10, 15, 20, 25 and 30
simultaneous agendas to be processed by the CBP mechanism. 50 runs for each test
group were performed, all of them on machines with equal characteristics. Several
data have been obtained from these tests, notably the average time to accomplish the
plans, the number of crashed agents, and the number of crashed services. For ALZ-
MAS 2.0 five CBP services with exactly the same characteristics were replicated.

Fig. 3(Top) shows the average time needed by both systems to generate the paths
for a fixed number of simultaneous agendas. The previous version of ALZ-MAS was
unable to handle 15 simultaneous agendas and time increases to infinite because it
was impossible to perform those requests. However, ALZ-MAS 2.0 had 5 replicated
services available, so the workflow was distributed and allowed the system to
complete the plans for 30 simultaneous agendas. Another important data is that
although the previous version of ALZ-MAS performed slightly faster when
processing a single agenda, performance was constantly reduced when new
simultaneous agendas were added. This fact demonstrates that the overall
performance of ALZ-MAS 2.0 is better when handling distributed and simultaneous
tasks (e.g. agendas), instead of single tasks. Fig. 3(Down) shows the number of
crashed agents for both versions of ALZ-MAS during tests. None of the tests where
agents or services crashed were taken into account to calculate the data presented in
Fig. 3, so these tests were repeated. As can be seen, the previous version of ALZ-
MAS is far more unstable than ALZ-MAS 2.0. These data demonstrate that this
approach provides a higher ability to recover from errors.

1 5 10 15 20 25 30

ALZ-MAS

0
10
20

30

40

50

60

Ti
m

e
(S

ec
on

ds
)

Simultaneous Agendas

ALZ-MAS ALZ-MAS 2.0

1 5 10 15 20 25 30

ALZ-MAS Agents

0

1

2

3

4

5

6

N
um

be
r

of
 C

ra
sh

es

Simultaneous Agendas

ALZ-MAS Agents ALZ-MAS 2.0 Agents

Fig. 3. Top: Time needed for both systems to generate paths for a group of simultaneous
agendas; Down: Number of agents crashed at both systems

Although these tests have provided us with very useful data, it is necessary to
continue experimenting with FUSION@. A SOA approach is an efficient way to
distribute resources and develop more robust multi-agent systems, especially when
handling complex mechanisms as the CBP presented.

Acknowledgments. This work has been supported by the IMSERSO 137/2007, the
UPSA U05E1A-07L01 and the MCYT TIN2006-14630-C03-03 projects.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: foundational Issues, Methodological
Variations, and System Approaches. AI Communications, 7, 39-59, IOS Press (1994)

2. Ardissono, L., Petrone, G., Segnan, M.: A conversational approach to the interaction with
Web Services. Computational Intelligence, 20, 693-709, Blackwell Publishing (2004)

3. Bratman, M.E.: Intentions, plans and practical reason. Harvard University Press,
Cambridge, MA (1987)

4. Camarinha-Matos, L.M., Afsarmanesh, H.: A Comprehensive Modeling Framework for
Collaborative Networked Organizations. Journal of Intelligent Manufacturing, 18(5), 529-
542, Springer Netherlands (2007)

5. Cerami, E.: Web Services Essentials Distributed Applications with XML-RPC, SOAP,
UDDI & WSDL. O'Reilly & Associates, Inc. 1st Edition (2002)

6. Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care.
IEEE Intelligent Systems, Special Issue on Ambient Intelligence, 23(2), 19-25 (2008)

7. Corchado, J.M., Bajo, J., De Paz, Y., Tapia, D.I.: Intelligent Environment for Monitoring
Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems, 44(2),
382-396, Eslevier, Netherlands (2008)

8. de Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Dynamic Case Based Planning. In: 8th
Int. Conference on Computational and Mathematical Methods in Science and Engineering,
vol. 1, pp. 213-224, La Manga del Mar Menor, Spain (2008)

9. Jayaputera, G.T., Zaslavsky, A.B., Loke, S.W.: Enabling run-time composition and support
for heterogeneous pervasive multi-agent systems. Journal of Systems and Software, 80(12),
2039-2062 (2007)

10. Li, Y., Shen, W., Ghenniwa, H.: Agent-Based Web Services Framework and Development
Environment. Computational Intelligence, 20(4), 678-692, Blackwell Publishing (2004)

11. Liu, X.: A Multi-Agent-Based Service-Oriented Architecture for Inter-Enterprise
Cooperation System. In: 2nd International Conference on Digital Telecommunications.
IEEE Computer Society, Washington, DC (2007)

12. Oren, E., Haller, A., Mesnage, C., Hauswirth, M., Heitmann, B., Decker, S.: A Flexible
Integration Framework for Semantic Web 2.0 Applications. IEEE Software, vol. 24, no. 5,
pp. 64-71, (2007)

13. Ricci, A., Buda, C., Zaghini, N.: An agent-oriented programming model for SOA & web
services. In: 5th IEEE International Conference on Industrial Informatics, pp. 1059-1064,
Vienna, Austria (2007)

14. Shafiq, M.O., Ding, Y., Fensel, D.: Bridging Multi-Agent Systems and Web Services:
towards interoperability between Software Agents and Semantic Web Services. In: 10th
IEEE International Enterprise Distributed Object Computing Conference, pp. 85-96, IEEE
Computer Society, Washington, DC (2006)

15. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2), 115-152, Cambridge University Press (1995)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

