
processes

Article

A Genetic Programming Strategy to Induce Logical
Rules for Clinical Data Analysis

José A. Castellanos-Garzón 1,2,*, Yeray Mezquita Martín 1, José Luis Jaimes Sánchez 3,
Santiago Manuel López García 3 and Ernesto Costa 2

1 Department of Computer Science and Automatic, Faculty of Sciences, BISITE Research Group,
University of Salamanca, Plaza de los Caídos, s/n, 37008 Salamanca, Spain; yeraymm@usal.es

2 CISUC, Department of Computer Engineering, ECOS Research Group, University of Coimbra,
Pólo II - Pinhal de Marrocos, 3030-290 Coimbra, Portugal; ernesto@dei.uc.pt

3 Instituto Universitario de Estudios de la Ciencia y la Tecnología, University of Salamanca,
37008 Salamanca, Spain; a108985@usal.es (J.L.J.S.); slopez@usal.es (S.M.L.G.)

* Correspondence: jantonio@usal.es

Received: 31 October 2020; Accepted: 26 November 2020; Published: 27 November 2020 ����������
�������

Abstract: This paper proposes a machine learning approach dealing with genetic programming to
build classifiers through logical rule induction. In this context, we define and test a set of mutation
operators across from different clinical datasets to improve the performance of the proposal for
each dataset. The use of genetic programming for rule induction has generated interesting results
in machine learning problems. Hence, genetic programming represents a flexible and powerful
evolutionary technique for automatic generation of classifiers. Since logical rules disclose knowledge
from the analyzed data, we use such knowledge to interpret the results and filter the most important
features from clinical data as a process of knowledge discovery. The ultimate goal of this proposal
is to provide the experts in the data domain with prior knowledge (as a guide) about the structure
of the data and the rules found for each class, especially to track dichotomies and inequality.
The results reached by our proposal on the involved datasets have been very promising when
used in classification tasks and compared with other methods.

Keywords: clinical data; feature selection; genetic programming; machine learning; data mining;
evolutionary computation

1. Introduction

Current data management and storage methods have been challenged by the high increase
in the amount of medical data available to us. Obtaining valuable information in the process of
knowledge discovery has become problematic. There is an urgent need for new tools and approaches
whose mechanism will allow overcoming the present-day limitations of computational medicine,
by converting large quantities of data into knowledge. Novel methods will make it possible to go
beyond simple data description, providing knowledge in the form of models. Through abstract data
models, it is possible to create highly reliable prediction systems [1–14].

The process of knowledge discovery from the data involves, among other techniques, machine
learning. Our interest is to select or combine techniques with a high performance in prediction tasks
for medical datasets. In medicine, prediction systems are most frequently applied in the field of
diagnosis and prognosis. According to previous research on the development of diagnosis systems,
it is possible to determine the presence or absence of a disorder through interpretation of patient
data [15]. These systems are used specifically in the diagnosis of patients. Prognosis systems use the
collected information to predict the progress of the condition a patient is suffering from or to determine
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whether a patient may suffer a disease in the future. Moreover, they are used to choose the most
effective treatment based on the patient’s symptoms and different medical factors [16].

In the context of diagnosis and prognosis, the aim of using intelligent systems based on machine
learning techniques is knowledge discovery from the collected information. Sometimes, the discovered
knowledge is expressed in a probabilistic model by relating the clinical features of patients to a stage
of the target disease. In other cases, a rule-based representation is selected to provide the expert with
an explanation of why certain decision was made. Knowledge representations as those described
above are known as white box systems and the focus of this research because they express part of
the knowledge directly. Finally, there are other cases in which the system is designed as a black box
for decision-making, where the system only shows the prediction results. All of these techniques are
suitable for making a diagnosis and prognosis of a patient’s condition [17].

Because of all previously explained, this research proposes a system generating classifiers based
on genetic programming (GP), which is capable of inducing sets of rules that represent the relationship
between the disease and the symptoms experienced by patients. Therefore, our goal is to build a
rule-based classifier and compare its ability to correctly classify data with other previously proposed
methods. Finally, we analyze the rules obtained by our approach to determine the most important
attributes of the dataset. In this case, the system performs a feature filtering process [18–21]. Rule-based
classifiers are an attractive approach since the structure of IF/THEN rules is well-known and can
easily be interpreted for knowledge discovery. Hence, such rules not only classify unknown patterns,
they also disclose knowledge about the class structure and problem domain. The goal of a rule-based
classifier is to find a set of rules that suit a labeled dataset. That is, the discovered rules should
represent the target dataset and cover each region of the search space. Hence, the application of GP in
the building of rule-based classifiers has been the basis of works such as [22–25]. Our ultimate goal is
to provide the expert with an initial interpretation of the data through our rules-based model that can
serve as a starting point in the study of the disease. Hence, we also provide a visual interpretation of
the data, which supports the process of knowledge discovery.

In summary, medical databases store a lot of data about the health condition of patients. Such an
amount of information is ideal for the application of machine learning techniques, which can transform
data into knowledge by analyzing the relationships provided by the model. This mechanism provides
a means of hypothesis validation [6,9]. To reach the goals proposed in this work, the rest of this
manuscript has been divided into the following sections: Section 2 deals with the background related
to this research. Section 3.1 describes the main features of our proposal, encoding, fitness functions,
genetic operators and running strategy. Section 4 describes the employed datasets, an analysis of
the structure and distribution of the datasets, the experiments to select the best mutation operators
for each medical dataset, and accuracy comparison of our approach with other machine learning
methods. At the end of this section, an analysis of the rules discovered by the proposal is given and
the most influential attributes of the datasets are analyzed. Conclusions, Appendix A (classifiers of our
proposal), Appendix B (mutation operator experiments), and the references of this research are the
final part of this document.

2. Background

Applications of genetic algorithms (GAs) to analyze medical data have allowed for solving
complex problems such as disease screening, diagnosis, treatment planning, pharmacovigilance,
prognosis and health care management [26]. GAs have been applied to different fields in medicine,
among which we can highlight, Radiology, Oncology, Cardiology, Endocrinology, Pulmonology
and Pediatrics, among others. In this context, GAs have been used for edge detection of images
obtained from Magnetic Resonance Imaging (MRI), Compute Tomography (CT) and ultrasound [27–29].
Making use of these kinds of algorithms, different methods have been proposed to detect
microcalcifications in mammograms leading to diagnosing breast cancer [30–32]. In other studies, GAs



Processes 2020, 8, 1565 3 of 23

have been used to fuse MRI images with Positron Emission Tomography (PET) in order to generate
colored images of breast cancer [33].

In other works [34], a methodology based on the application of a Micro-Genetic Algorithm
(MGA) was used to generate the training set that best detects solitary lung nodules. The designed
algorithm can detect lung nodules with about 86% sensitivity, 98% specificity, and 97.5% accuracy.
In [35], the authors proposed a model using Particle Swarm Optimization method (PSO), a GA and
a Support Vector Machine (SVM) in conjunction with feature selection and classification of CT, MRI
and ultrasound images. The proposed method was capable of detecting lung cancer with an accuracy
of 89.5%.

GAs have also been used to detect patients with some type of carcinoma through Microarray
Technology. For example, in [36], a GA combined with an Artificial Bee Colony (ABC) algorithm was
proposed. The method aims to make cancer classification in patients through extraction of features
from microarray data. This method was tested with a dataset of colon carcinoma, two different
datasets of Leukemia, a dataset involving patients with lung carcinoma, and one of patients with Small,
Round-Blue Cell Tumors (SRBCT). The method proposed in that paper achieved an accuracy of almost
100% when selecting very few biomarkers.

In the area of Pediatrics, GAs are also being used to detect diseases such as autism from gene
expression microarrays. In [37], an approach of GA as a feature selection engine and an SVM as the
classifier were proposed to validate the set of features selected. In this work, a performance greater
than 86% accuracy for one of the used datasets and a performance of 92.93% accuracy for the other
dataset were reached to outperform previous works.

There are other applications of GAs aimed at making predictions from the data acquired from
blood tests. In [38], a GA is used to optimize the performance of an Artificial Neural Network (ANN)
to detect Coronary Artery Disease (CAD). Through the previous approach, the authors show that CAD
can be detected without angiography and consequently eliminate its high cost and the main side effects.
In another context, electrocardiogram (ECG) signals in cardiology have been used to detect cardiac
arrhythmias [39]. In this work, a method liking a Genetic Algorithm with a Backpropagation Neural
Network (GA-BPNN) was proposed to reduce the dimension of the datasets by 50% and achieve 99%
accuracy. This makes the method suitable for automatic identification of cardiac arrhythmias.

As stated at the beginning of this section, there are many more applications of GAs to medicine
that can be consulted about in the literature [40–42]. Since the efficacy of GAs in the medicine field has
been proved, we will deal with other recent algorithms (Genetic Programming), which include a GA
as its base operation. Genetic Programming (GP) is a kind of GA whose main difference with respect
to normal GAs is to produce expressions (functions or programs) as outputs rather than data [43–45].
An example of the use of this kind of algorithms in the medical field is shown in [46]. In this work, a
GP algorithm is proposed to automatically create the best mathematical formula that combines a set
of preselected features from a Magnetoencephalography (MEG) dataset. To evaluate the generated
formulas, a K-nearest neighbor algorithm (KNN) is used. This approach achieved 91.75% sensitivity
and 92.99% specificity in the diagnosis of Epilepsy.

GP is also used to provide diagnosis from MRI images by evaluating the medical spine condition
of patients [47]. The GP algorithm proposed in this work uses of a fitness function based on expert
knowledge, in this case, a neuroradiologist. The rules rendered in each generation of the algorithm
are evaluated and then compared with the true results in order to select the rules with less difference.
The accuracy reached was greater than 90% in the conditions evaluated by combining the GP algorithm
and expert knowledge.

Another example of GP applied to medicine is image classification [48]. In this work, a GP
algorithm is proposed to create and evolve tree-based classifiers, whose aim is to diagnose active
tuberculosis from raw X-ray images. The framework proposed was able to achieve a competitive
classification and a superior speed compared to methods that rely upon image processing and
feature extraction.
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In general terms, GP represents a flexible and powerful evolutionary technique that uses a
set of functions and terminals to produce computable expressions. Hence, this research presents a
GP method to render rule-based classifiers for knowledge discovery from medical data. Some of
the advantages related to this kind of classifiers generating comprehensible knowledge are high
expressiveness, which allows them to render models that are very easy to interpret. Such rules can
be altered to handle missing values and noise from attributes of the data set. They are relatively
easy to obtain and very fast at classifying new patterns (or data) [49]. Moreover, a very important
advantage of such rules for machine learning is that they are intuitively comprehensible to the user
[50,51]. Another advantage related to the above is that they are not only used to classify, but they also
represent, by themselves, a process of knowledge discovery, providing the user with new insights into
the data and their application domain [52].

3. Materials and Methods

3.1. Evolutionary Strategy to Build Rule-Based Classifiers (ESRBC)

This section presents our main proposal, the evolutionary method (ESRBC) to render rule-based
classifiers. Thus, we describe the strategy to follow by ESRBC, individuals, crossover, mutation
operators and fitness functions. Individuals represent logical rules adopting an internal representation
of a linear sequence of clauses (or comparisons) separated by conjunctions AND. Individuals to be
built in this proposal follow the Michigan-style [24,50,53,54]; hence, each individual encodes a single
rule (with a linear chromosome) with a variable length, where each rule is associated with the class of
the dataset it represents. Therefore, an individual can be evaluated as True or False according to the
pattern evaluated in the antecedent of the rule. As applicable, the pattern may or may not belong to
the class assigned to the rule.

As explained, the individuals generated by ESRBC represent logical rules of type IF <CLAUSES>
THEN <CLASS>, where <CLAUSES> is formed by a set of clauses (or comparisons) separated by
conjunctions AND. <CLASS> is the class of the dataset that is being represented by the rule or, in
other words, the class to which the rule belongs. A more detailed representation of a rule can be given as
follows:

IF (at1 o1 val1) AND (at2 o2 val2) AND · · · AND (atn on valn) THEN class = k,

where (ati oi vali) is clause number i, ati is an attribute of the dataset, oi is a comparison operator
from set {<,>,≤,≥,=, 6=}, vali a value of the set of all possible values admitted by ati, whereas k is
the class of the dataset covered by the rule. An example of logical rules representing a dataset with
attributes {p, q, r, s, t} and two classes {0, 1} can be as follows:

IF(p > 12.3) AND (p ≤ 15) AND (s 6= 3.4) THEN class = 0,

IF(p ≤ 12.3) AND (r > 7.4) AND (t ≥ 2) THEN class = 1,

which means that, if there is a specific pattern (pi, qi, ri, si, ti) from the domain of the dataset, whose
values pi and si hold the antecedent of the rule in class-0, then such a pattern belongs to class-0.
Likewise, if attribute values pi, ri, ti hold the antecedent of the rule in class-1, then this pattern is
in class-1. Keep in mind that the challenge that each rule learned from a dataset must meet is
generalization. In other words, the set of rules holding a dataset should generalize enough in such a
way that the pattern space be properly partitioned. Thereby, each region of the space is covered as
much as possible by the set of rules.

Continuing with the description of the rule concept, we define the length of a rule as the number
of clauses that form it. The evolutionary algorithm (EA) of our approach, which is responsible for
the search process for a diverse set of rules, adopts the sequential covering strategy for each class
of a dataset [51]. Sequential covering is a technique that discovers one rule at a time. The EA is
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executed multiple times to build a complete set of rules representing each class of a dataset. During
each execution, the best rule evolved through the EA is added to the set of previously discovered
rules and the patterns covered by this rule are removed from the dataset. The process is repeated until
there are no more patterns to be covered. The steps followed by this methodology can be described
as follows:

1. Select the set of patterns from a new class i in the input dataset;
2. Create an initial population P0 of rules candidate to represent patterns in class i;
3. Run the EA on P0 to achieve a final population Pf ;
4. Add the most fit individual (rule) r of Pf to the set of rules R (R is empty initially);
5. Remove all patterns from class i holding rule r;
6. If class i is not empty, then go to step 2;
7. If there are more classes in the dataset, then i := i + 1 and go to step 1;
8. At the end of the process, R has a set of rules learned from each class of the input dataset.

3.2. Fitness Functions

This section introduces the fitness functions used in the evolutionary algorithm of our approach.
In this case, the fitness functions defined are based on the concept of accuracy [52,55,56]. The accuracy
of a rule is the fraction of patterns from its class, covered by the rule. Then, according to the definition
above, we are going to introduce two variants of fitness functions based on accuracy. However, we
firstly need to define two functions which evaluate a pattern e in a rule r. Then, the first function is
g acting on r and e, i.e., g(r, e), which computes the number of clauses of r evaluated True when e is
evaluated in r. The second function defines the evaluation of a pattern e in r (r(e)) in the following way:

r(e) =

{
1, if e belongs to the class of r, in this case we say, e holds r;
0, otherwise.

(1)

Note that g(r, e) evaluates the number of clauses in r holding a pattern e, whereas r(e) evaluates
the rule to 1 (True) if it covers pattern e (all its clauses become True). Additionally, if we want to specify
the class of both r and e, we write ri and ei respectively, where i is a class of the dataset. Finally, the two
expected fitness functions are given below. For this case, both fitness functions define a maximization
problem. The first objective of f1 assesses accuracy based on the number of clauses turned true by
patterns of the target class, whereas the second objective acts as a penalty for patterns not belonging to
the class of the rule, whose values make the clauses of the rule true. The same situation happens for
f2, but, in this case, the accuracy is assessed by considering the number of patterns holding a rule r.
f1 has been created to be run in the first generations of the evolutionary algorithm where rules have
randomly been created and no pattern holds them. However, the use of f2 makes more sense in a
second stage of the evolutionary algorithm (after applying f1) when the rendered rules have reached a
certain learning level.

Definition 1. Fitness function- f1.
If D is a labeled dataset with k classes, Ci a class of D and ri a rule of Ci and consider i, j ∈ [0, 1, · · · , k− 1].
Then, we define a fitness function- f1 applied to ri as:

f1(ri) =
1

|Ci| · |ri| ∑
∀e∈Ci

g(ri, e)− 1
|D| − |Ci| ∑

∀e′∈Cj ,j 6=i
g(ri, e′) + 3. (2)
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Definition 2. Fitness function- f2.
From the same conditions given in Definition 1, we define fitness function- f2 applied to a rule ri as:

f2(ri) =
1
|Ci| ∑

∀e∈Ci

ri(e)− 1
|D| − |Ci| ∑

∀e′∈Cj ,j 6=i
ri(e′) + 3. (3)

Both fitness functions have been focused on a maximum problem: the bigger their values, the
more fit the evaluated rules. In the first fitness function, the first objective deals with a kind of accuracy
using g, which consists of computing the number of clauses evaluated True in the current rule for all
pattern of its class. The second objective measures the number of clauses evaluated True by the current
rule for all pattern belonging a different class of the rule class. This fitness function is useful in the
evaluation of rules built in the first generations of the EA, where the rule accuracy is zero. The second
fitness function is responsible for measuring the number of patterns from the rule class holding the
rule versus the number of patterns of other classes holding the rule.

3.3. Genetic Operators

The crossover operator used in this method to recombine clauses from two parent-rules to achieve
two new children-rules performs as the classical operator [57]. That is, the crossover operator selects a
random position (with a uniform distribution) from two parent-rules and exchanges two segments of
clauses from them to achieve two children, inheriting part of the clauses (genetic code) of their parents.
In other words, given two rules, the position of a clause is randomly selected. Then, the clauses located
on the right or left side of both rules (which is also decided at random) are exchanged to create two
new rules. The mutation operator is responsible for providing new information to the individuals
generated. In this case, we provide three types of mutation operations by defining a mutation group
for each one:

1. Mutation by clause, M1: Changes the attribute, comparison operator or value in a randomly chosen
clause from the rule by others, also randomly selected;

2. Mutation clause by clause, M2: This operator applies the M1 operator clause by clause to a rule.
For each clause, the operator decides whether to mutate. If a mutation has been selected, then the
operator decides what mutation type to perform. Namely, changing the attribute, the comparison
operator or the value of the attribute in the current clause.

3. Mutation by transformation, M3: This operator can remove a part of the rule, add a new rule, or
apply the M1 operator to the rule. One of the three operations above is selected at random. In the
first operation, a position in the rule is randomly selected to remove the left or right side. Then,
it randomly selects the part of the rule to be removed. The second operation adds a new rule at
the end of the current rule. The added rule is randomly created (by also choosing its size in a
random way).

The mutation operator applied to each mutation in the rules is selected at random. Note also
that the goal of defining the M2 and M3 compound mutation operators is to create different mutation
levels from the M1 basic mutation operator. This allows us to explore different alterations on the
individuals yielded from generation to generation. Each of these operators (M1, M2, and M3) performs
an alteration level of individuals by regarding a minor (M1), medium (M2) and higher level (M3)
of alteration.

3.4. Running the Evolutionary Algorithm

Once the genetic operators have been defined, the evolutionary algorithm (EA) of our proposal
ESRBC is responsible for discovering each rule covering different parts of the search space, hoping
the rules can generalize. Hence, the EA is run following the general scheme given by evolutionary
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algorithms [57,58], with the particularity of introducing an elitism which is transmitted from generation
to generation and tournament selection as the adopted selection method.

Aside from the above, the EA includes an evolutionary strategy of local search (Algorithm 1
ESLS), which acts on the population or the most fit individual returned by the EA. In fact, the option
of executing Algorithm 1 from a population or a single individual is a parameter of the algorithm.
The term local search is because Algorithm 1 is based on mutation operators and in each generation,
Algorithm 1 replaces only individuals who have improved their value fitness after the mating process.
The goal of this strategy is to refine the solutions of the EA by making an in-depth search. Hopefully,
the individuals from the EA are close enough to a global optimum. Therefore, Algorithm 1 is in charge
of searching such an optimum. This idea has been taken from [59] and implemented in [60] with good
results. The idea is as follows:

• Running a genetic algorithm (GA) until it slows down, then letting a local optimizer take over the last
generation (and/or best individual) of the GA. Hopefully, the GA is very close to the global optimal.

ESLS has been defined below. This strategy improves a population of individuals or a single
individual given by ESRBC. Finally, both ESRBC and Algorithm 1 were implemented in the C++
programming language, whereas the experiments were performed under R-Project [61].

Algorithm 1 ESLS
Input: POP, the population composed by the individuals in the last generation of the EA.
MaxGeneration, the number of generations. MO applies one of the mutation operators given in
Section 3.3, chosen at random. f2, fitness function given in Section 3.2.

Output: POP, as a result of improvement of the input.

1. t := 0;
2. while t < MaxGeneration do
3. t := t + 1;
4. for all rule r in POP do
5. % Computing fitness
6. f := f2(r);
7. % Applying mutation.
8. newr := MO(r);
9. % Evaluating new individual.
10. newf := f2(newr);
11. % Updating the improved individual.
12. if newf > f then r := newr;
13. end for
14. end while
15. end.

4. Results

This section describes the experiments carried out by our proposal on the clinical datasets, which
have been selected from Machine Learning Repository [62]. The used datasets deal with Heart,
Hepatitis, and Dermatology diseases, which we call DS1, DS2, and DS3, respectively, and have the
features listed below. Note that Number of patterns refers to the number of instances (number of rows)
of the dataset while Number of attributes refers to the number of variables (number of columns) of
the dataset.

1
1
1
1
1
1
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1. Title: SPECTF Heart Dataset (DS1);

• Number of patterns: 267;
• Number of attributes: 22 plus the class attribute;
• Number of classes: 2 classes;
• Attribute type: binary;
• Missing attribute values: No missing values.

2. Title: Hepatitis Domain (DS2);

• Number of patterns: 155;
• Number of attributes: 19 plus the class attribute;
• Number of classes: 2 classes;
• Attribute type: Categorical, Integer and Real;
• Missing attribute values: yes (10-nearest neighbor technique was used in this research for

imputation of missing values).

3. Title: Dermatology Database (DS3);

• Number of patterns: 366;
• Number of attributes: 34 plus the class attribute;
• Number of classes: 6 classes;
• Attribute type: Categorical and Integer;
• Missing attribute values: yes (20-nearest neighbor technique was used in this research for

imputation of missing values).

4.1. Exploring and Analyzing the Datasets

This section shows different linked views of the distribution and structure of the datasets,
which allow us to have an initial assessment of their behavior. This can also help explain some
of the results obtained for the methods applied. Starting with the DS1 dataset shown in Figure 1,
we have that this dataset is represented by a diamond-shaped cloud of points. According to the point
distribution in each class, Class-1 is much more compact and bigger than Class-0. Therefore, Class-0
could need more rules to classify the patterns of its class than Class-1. Since points in Class-1 are
more scattered in space and both classes are intertwined, it would be more difficult for this class to
find rules that do not classify patterns in Class-0 by mistake. On the other hand, at the bottom of the
figure, there is the heatmap of the dataset where both classes are separated by boxes. Note that the
values in this dataset are binary and, in Class-0, values 0 predominate while, in the other class, values
1 predominate. This means that, unlike Class-1, Class-0 is characterized by the absence of the property
denoted by many of the attributes evaluated by the disease represented in the dataset.

Turning now to the DS2 dataset shown in Figure 2, we have that this dataset is represented by a
cloud of points in tree form at the top of the figure. As in the DS1 dataset, both classes are intertwined,
Class-1 is more compact and bigger than Class-0. Unlike the DS1 dataset, points are more scattered
in space, which can induce a smaller number of rules classifying each class. Note that it is more
difficult to find visual differences separating both classes for the heatmap given for DS2 than for the
case of DS1. The above can imply that DS2 is a difficult dataset to classify, which tests any applied
classifier (method).

As for the DS3 dataset shown in Figure 3, we have that, unlike the other datasets, this one has six
classes, which may increase the classification error of the methods applied to the dataset. The point
cloud of this dataset, shown at the top of the figure, is T-shaped with agglomerations of points at the
ends and in the center of the 3D-scatterplot. Note that the same T-structure of the dataset is maintained
for the points in each class. In this case, each class may generate four rules since there are four clusters
in each class. However, the greatest difficulty would be to separate the classes from the others, since
the six classes are very interrelated. Finally, note that classes 0, 1, and 2 differ from classes 3, 4, and 5
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in that, in the latter, the light green color predominates (values below the average value of the whole
dataset), while, in the rest of classes, the representative color is brown (values above the average value
of the whole dataset). This shows that classes 0, 1, and 2 share some type of similarity with the type of
disease represented by each class, which makes the difference from the diseases represented in classes
3, 4, and 5. The same reasoning done for classes 0, 1, and 2 is met for classes 3, 4, and 5 of DS3.

Figure 1. DS1 dataset (Heart Dataset). A 3D-scatterplot is shown at the top of the figure where
each point represents a column (an individual) of the dataset showed as a heatmap at the bottom.
The dimension of the dataset was reduced to three components by using principal component analysis.
In addition, points belonging to each class are shown in different colors. The heatmap corresponding
to the same dataset is shown at the bottom of the figure. Each class of the dataset is framed in a box.
The color bar shown at the top represents the color scale used in the heatmap.

Figure 2. DS2 dataset (Hepatitis Dataset). A 3D-scatterplot is shown at the top of the figure where
each point represents a a column (an individual) of the dataset showed as a heatmap at the bottom.
The dimension of the dataset was reduced to three components by using principal component analysis.
In addition, points belonging to each class are shown in different colors. The heatmap corresponding
to the same dataset is shown at the bottom of the figure. Each class of the dataset is framed in a box.
The color bar shown at the top represents the color scale used in the heatmap.
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Figure 3. DS3 dataset (Dermatology Dataset). A 3D-scatterplot is shown at the top of the figure where
each point represents a column (an individual) of the dataset showed as a heatmap at the bottom.
The dimension of the dataset was reduced to three components by using principal component analysis.
In addition, points belonging to each class are shown in different colors. The heatmap corresponding
to the same dataset is shown at the bottom of the figure. Each class of the dataset is framed in a box.
The color bar shown at the top represents the color scale used in the heatmap.
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4.2. Mutation Operator Evaluation

This section deals with the evaluation of mutation operators M1, M2, and M3 from their
effectiveness and behavior under the different given datasets. The goal of this test is to carry out an
analysis of the behavior of the mutation operators to select the operators having a better performance
on a given dataset. Consequently, we have run the evolutionary method (ESRBC) using only the
mutation operators (without the crossover operator). Then, ESRBC is run 20 times for each operator
and each dataset (DS1, DS2, and DS3) in the following way: for each mutation operator applied to
a dataset, ESRBC has been run 20 times, each using a different mutation probability value. In each
execution, the probability value is increased in a step of 0.05, starting from 0. Then, for each mutation
value, the fitness value of the most fit individual in 5000 generations has been taken out to render the
graphics given in Figures A1–A3 (Appendix B) for datasets DS1, DS2, and DS3, respectively. Thus,
the achieved graphics represent mutation probability values in x-axis versus fitness value (y-axis) for
the best individual yielded in each mutation probability value.

As shown in these figures, each row deals with four graphics, which correspond to the same
experiment repeated with the same mutation operator. Since ESRBC includes a stochastic process in
the search, we have repeated the experiment four times for each mutation operator. Therefore, each
row in these figures correspond to a mutation operator, i.e., the first row represents M1, the second
and third rows correspond to M2 and M3, respectively. Finally, each graphic in each row represents
the fitness values reached by the best individuals for the current operator mutation. Such values are
represented by means of a blue curve. The mean fitness values from the four experiments carried out
(in each row) for each operator are represented through the green curve, whereas the standard error
bars are stressed in pink lines.

By making now an analysis of the results for these three figures, we can say that, for the DS1
dataset, the results in Figure A1 (Appendix B) show that, for operators M1 and M2, most of the reached
fitness values (blue curve) are between 3 and 3.4. On the other hand, there is overlap between the
error bars (pink bars), which indicates uniformity of fitness values for M1 and M2 with respect to
different mutation probability values. However, the fitness values (blue curve) given in the graphics
for operators M1 and M2 present more oscillations than the ones represented by the curves given for
the M3 operator. In addition, the standard error bars for the M3 operator are smaller, indicating that
the average value plotted is more reliable than the one of those in M1 and M2. Moreover, most fitness
values with respect to mutation probability values are between 3.2 and 3.4. Thus, the M3 operator
appears to be more significant for the DS1 dataset than operators M1 and M2. Hence, we can use only
M3 as the mutation operator when using the evolutionary method to build a classifier on the DS1
dataset. In addition, keep in mind that, since the standard error bars overlap in the M3 operator, it
is not necessary to assign a big valor of mutation probability in the running of ESRBC to build the
rule-based classifier. The above improves the runtime of the method.

Unlike Figure A1 (Appendix B), graphics in Figure A2 present more oscillations according to
the curve representing fitness values across from mutation probability values (blue curve). However,
the error bars maintain an overlap. In addition, note that the fitness values achieved for M1 and M3
are higher than those given in Figure A1. That is, for M1, most fitness values are between 3.4 and 3.6.
For M3, most fitness values are between 3.5 and 4 whereas fitness values for the M2 mutation operator
are more unstable with respect to mutation probability values. Therefore, we can use operators M1
and M3 as the only ESRBC mutation operators when using the DS2 dataset.

For the results obtained from the DS3 dataset, Figure A3 (Appendix B), we have that they are like
those given in Figure A1. Hence, by applying the same reasoning as the one given in Figure A1, the
M3 mutation operator is the most stable and so the operator that best performs on the DS3 dataset.
Once the mutation operators performing well on each dataset have been chosen, we can proceed
to compare the classifiers induced by our method with other machine learning methods under the
accuracy measure.
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4.3. Accuracy and Comparison of the Evolutionary Method

The accuracy of the rule-based classifier yielded by our approach has been computed and
compared with other methods for each introduced dataset. A stratified 10-fold cross-validation
was used to measure the accuracy of all methods. The evolutionary method (ESRBC) defined was
run in two stages. In the first stage, ESRBC was run by using the f1 fitness function, whereas f2 was
used in second stage. The settings of ESRBC for each dataset have been listed in Table 1 and the
methods used in the comparison process [55,56,63,64] have been listed in Table 2. Then, the results
reached by ESRBC compared with other methods have been listed in Table 3. The best accuracy value
for each dataset has been underlined. ESRBC reached the best values for the DS1 and DS3 datasets
while its accuracy for DS2 was not very different from the one of the method reaching the best value.
Since the number of patterns for the classes of the DS1 and DS2 datasets are unbalanced, Table 3 also
shows the Youden index which deals with unbalanced classes in a dataset. This index is defined as
sensitivity + speci f icity− 1.

Note that the methods listed for the DS3 dataset are different from those used in DS1 and DS2.
This is because the methods used for DS1 and DS2 are for binary classification, whereas the DS3 dataset
has six classes. Therefore, we need to use multiclass methods in DS3, different from the methods
used in the previous datasets. On the other hand, the greatest accuracy reached for the DS1 and DS2
datasets was less than 90%, which tells us that they are difficult to classify (due to their compactness
and difference in the size of their classes), as explained in Section 4.1. However, the greatest accuracy
reached for the DS3 dataset was greater than 90%, although DS3 has six classes. This may be due to
the distribution of the dataset, where each class is represented by four groups of points separated from
each other (which facilitates the classification), as explained in Section 4.1.

Table 1. Settings given to run the evolutionary method (ESRBC) to build rule-based classifiers for
each dataset.

ESRBC Settings DS1 DS2 DS3

Population size 70 50 100

Number of generations per rule (fitness function-1) 100,000 100,000 200,000

Number of generations per rule (fitness function-2) 200,000 200,000 400,000

Mutation operator per rule for Algorithm 1 (local search) 10,000 10,000 100,000

Mutation operator M3 M1 and M3 M3

Crossover probability 0.6 0.6 0.6

Mutation probability 0.2 0.3 0.2

Maximum size of rules (maximum number of clauses) 10 10 10

Table 2. Name and description of the methods used in the comparison of the approach proposed.

Method Description

SVM Linear Support Vector Machine, which finds the best
hyperplane separating both classes.

naiveBayes
This model computes the probability of each class given

the values of all attributes and assuming the attribute
conditional independence.

1
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Table 2. Cont.

kNN

k-Nearest Neighbor classification.
This is a lazy model which classifies

the input pattern by using its
k-Nearest Neighbors from the

training set.

ANN

Artificial Neural Network
implementing a Multilayer

Perceptron, which uses a single
intermediate layer for our case.
Backpropagation and resilient

backpropagation have been
implemented.

ML-MPCA
Maximum Likelihood estimation

with Mixture of Principal
Component Analyzers.

Bayesian-MPCA Bayesian approach with Mixture of
Principal Component Analyzers.

Table 3. Comparative table of mean accuracy for the evolutionary method (ESRBC) compared with the
other machine learning methods.

Dataset Method Accuracy (%) Youden Index (%)

DS1 SVM 78.95 12.45
naiveBayes 46.93 14.97

k-NN (k = 3) 81.58 22.91
ANN 79.39 12.95

ESRBC 81.82 40.48

DS2 SVM 82.57 46.91
naiveBayes 75.47 37.56

k-NN (k = 5) 75.47 16.47
ANN 81.94 42.56

ESRBC 81.32 41.67

DS3 ML-MPCA 94.9 -
Bayesian-MPCA 95.8 -

ESRBC 95.92 -

5. Discussion: Rule Analysis

This section makes an analysis of rules discovered by the classifiers induced by the evolutionary
method (ESRBC) for each dataset in Table 3. The aim of this analysis is to discover knowledge from
those rules and identify attributes and relations relevant for the disease. In that sense, such prior
knowledge would act as a starting point for experts in this field.

Appendix A lists the rules given by the best classifier found by our proposal for each dataset.
The analysis carried out in this section is based on knowledge disclosed from such rules. Starting from
the DS1 dataset, we have that it contains diagnoses based on 22 features, built from Single Proton
Emission Computed Tomography (SPECT) images, which aim to distinguish between heart disease
and normal heart operation. For this case, ESRBC found six rules for a class and only one rule for the
other class. Of the 22 attributes, only five of them were not used by any rule (F1, F2, F9, F12, and F18),
which implies that they are not important in the classification of the disease and may be discarded
from the analysis. However, attributes F5, F21, and F22 achieved the greatest frequency of occurrence
by rules in class-0 (they occurred in 42.86% of rules). Hence, such attributes are representative for
class-0. Meanwhile, class-1 used a single rule with only one attribute, F8. The F8 attribute has been
used in both classes, so it is not only important for class-1 but also for the disease in question.
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The DS2 dataset consists of 19 attributes and two different classes, including clinical and
biochemical variables. ESRBC found three rules for class-0 and 2 rules for class-1. Of the 19 attributes,
12 of them were used in the rules and seven of them were not used by any rule (STEROID, MALAISE,
ANOREXIA, LIVERBIG, LIVERFIRM, VARICES and HISTOLOGY). Thus, they can be discarded from
the classification process. In addition, the most frequent attributes by rules in class-0 were ALBUMIN
with 100%, PROTIME, AGE and ALK PHOSPHATE with 66.67%, whereas class-1 only used the
ALBUMIN and SEX attributes. Note that the ALBUMIN attribute is the only one used in both classes.
Therefore, this attribute is significant for the study of the disease. This way, we can identify three groups
of patients presenting different features in class-0: patients holding {ALBUMIN ≤ 3.99, PROTIME ≤
50, SEX = 1}, patients holding {ALBUMIN 6= 3.80, AGE ≥ 37, 64.88 ≤ ALKPHOSPHATE < 95}
and patients holding {ALBUMIN ≥ 3.50, PROTIME ≥ 56.16, ALKPHOSPHATE > 104.77, AGE ≥
30}. Patients in class-1 are government by attributes {ALBUMIN ≥ 2.9, SEX = 2}.

The DS3 dataset presents data of patients of six different erythemato-squamous diseases. That is,
psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis and pityriasis rubra pilaris.
The main interest of applying our proposal to this dataset is that these diseases are difficult to
distinguish, and they normally require a biopsy and present many common histologic characteristics.
The classifier found for DS3 rendered 11 rules distributed in the six classes. Namely, 1 rule in classes 0,
2, 4 and 5; 2 rules in class-1 and 4 rules in class-3, which coincides with that explained in Section 4.1 for
DS3. Of the 33 attributes in this dataset, 12 were filtered by the rules of the classifier, whereas 21 were
not selected by the same rules. In this case, note that a significant number of attributes was not chosen
by the rules of the classifier. This means that the classifier was able to filter the most relevant features
(12 features, see Appendix A.3) for the diseases represented by DS3, whereas the remaining features
can be removed from the analysis, since they do not provide valuable information.

By analyzing the attributes in this dataset, we have that the FIBROSIS, AGE, ITCHING, and
SPONGIO attributes have the greatest frequency of occurrence. In particular, FIBROSIS appears in 50%
of the classes of this dataset (classes: psoriasis, seboreic dermatitis and cronic dermatitis), whereas AGE
appears in 80% of rules in class-3 (lichen planus), ITCHING, and SPONGIO appear in 60% of rules in
the same class-3. In particular, patients in each class are governed by the following relationships:

Class-0: patients holding {FIBROSIS = 0, SPONGIO = 0, ELONGATION > 0};
Class-1: patients holding {FIBROSIS = 0, AGE = 20, DBORDERS ≤ 2};
Class-2: patients holding {BANDLIKE > 1, THINNING 6= 1};
Class-3: this class supports four age-related subgroups of patients, namely,{AGE ≥ 18, ITCHING ≤

1}, {AGE = 27, ITCHING < 2, SPONGIO > 0}, {AGE = 36, ITCHING ≤ 1, SPONGIO > 0}
and {AGE = 62, SPONGIO > 0};

Class-4: patients holding {FIBROSIS > 0, POLYPAPULES = 0};
Class-5: patients holding {PERIFOLLI > 0, FOLLIPAPULES > 0}.

Note that, unlike the AGE feature, a value zero for the remaining features means that such a
feature is not present in the patient, whereas a value greater than zero means that the patient presents
the feature to a degree associated with the value. Consequently, with the results above, we can say that
the study of these attributes can contribute to gain more insight about the diseases involved in such
a dataset.

6. Conclusions

This work has proposed a machine learning method focused on genetic programming to render
rule-based classifiers. Hence, this proposal has been aimed at inducing sets of logical rules able to
learn the structure of the classes given in a dataset. We have applied the proposal to three clinical
datasets (our concerning domain) and compared with other methods. In addition, we have identified
the most reliable mutation operators regarding each dataset and, in that way, to improve the efficiency
of our proposal. The results reached have been very promising when compared with other approaches.
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This proves the reliability of this approach to be used in the analysis of clinical data, which is our target
data domain. Finally, we have disclosed certain relevant features from the logical rules found for each
dataset involved in the experiment. Thereby, the proposal presented in this work can also be useful in
the process of feature selection, since the attributes appearing in the rules of a classifier are the most
important and so they discriminate the rest of attributes of the dataset. Related to the above, we have
given an interpretation of the data by analyzing the dataset structures and the features of the rules
found for each dataset. This prior knowledge can help the expert to establish a starting point for the
study of the disease represented in the datasets.
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Appendix A. Rule Based-Classifiers Rendered by the Evolutionary Method

Appendix A.1. Rules of the DS1 Dataset (Heart Dataset)

Number of rules in the Classifier: 7
number of attributes: 22
Number of classes: 2

(Class #0)
--------------------
IF (F13<0.37 ^ F16<=0.00 ^ F11=0.00) THEN Class := 0
IF (F5=1.00 ^ F21<=0.00 ^ F20<>1.00 ^ F10<1.00) THEN Class := 0
IF (F7<0.05 ^ F5<=0.72 ^ F17<=0.39 ^ F22<>1.00 ^ F4=0.00 ^ F6<>0.00) THEN
Class := 0
IF (F17<0.38 ^ F14<>0.00 ^ F3>=0.07 ^ F20<=0.00 ^ F15=0.00 ^ F21=1.00) THEN
Class := 0
IF (F13>=1.00 ^ F22<=0.68 ^ F1<1.00 ^ F14<=0.02 ^ F8<=0.00 ^ F11<>1.00) THEN
Class := 0
IF (F5<0.34 ^ F10<>0.00 ^ F21>=1.00 ^ F19=0.00 ^ F3=1.00 ^ F22<>1.00) THEN
Class := 0

(Class #1)
--------------------
IF (F8<=1.00) THEN Class := 1

Appendix A.2. Rules of the DS2 Dataset (Hepatitis Dataset)

Number of rules in the Classifier: 5
number of attributes: 19
Number of classes: 2

(Class #0)
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--------------------
IF (FATIGUE<=1.00 ^ SEX=1.00 ^ ALBUMIN<=3.99 ^ PROTIME<=50.00 ^ PROTIME>28.85)
THEN Class := 0
IF (SPIDERS<=1.00 ^ SPLEEN>1.11 ^ ALBUMIN<>3.80 ^ AGE>=37.00 ^
ANTIVIRALS>=1.87 ^ ALK>=64.88 ^ ALK<95.00 ^ BILIRUBIN<>0.80) THEN
Class := 0
IF (ALK>104.77 ^ PROTIME>=56.16 ^ SGOT<=64.00 ^ ASCITES>=2.00 ^ ALK<>50.00 ^
ALBUMIN>=3.50 ^ AGE>=30.00) THEN Class := 0

(Class #1)
--------------------
IF (ALBUMIN>=2.90) THEN Class := 1
IF (SEX>1.03) THEN Class := 1

Appendix A.3. Rules of the DS3 Dataset (Dermatology Dataset)

Number of rules in the Classifier: 11
number of attributes: 34
Number of classes: 6

(Class #0)
--------------------
IF (fibrosis<=0.00 ^ elongation<>0.00 ^ spongio<=0.00) THEN Class := 0

(Class #1)
--------------------
IF (kphenom=0.00 ^ vacuoli<=0.97 ^ clubbing<=0.48 ^ follipapules<1.83 ^
fibrosis=0.00 ^ disappear<0.32 ^ thinning<=1.00) THEN Class := 1
IF (age=20.00 ^ dborders<2.00) THEN Class := 1

(Class #2)
--------------------
IF (bandlike>1.00 ^ thinning<>1.00) THEN Class := 2

(Class #3)
--------------------
IF (bandlike<=0.00 ^ PNL<3.00 ^ kphenom>0.00 ^ elongation<=0.00) THEN
Class := 3
IF (elongation<=0.00 ^ age>=18.00 ^ itching<1.11 ^ disappear<>0.00) THEN
Class := 3
IF (itching<2.00 ^ inflam=2.00 ^ age=27.00 ^ spongio>0.00) THEN Class := 3
IF (age=36.00 ^ spongio>0.00 ^ inflam=2.00 ^ itching<=1.00) THEN Class := 3
IF (age=62.00 ^ spongio<>0.00 ^ sawtooth=0.00) THEN Class := 3

(Class #4)
--------------------
IF (fibrosis>0.00 ^ polypapules<=0.00) THEN Class := 4

(Class #5)
--------------------
IF (perifolli>0.00 ^ follipapules<>0.00) THEN Class := 5
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Appendix B. Test Charts of the Mutation Operators

Figure A1. Mutation tests for mutation operators M1, M2, and M3 for the DS1 dataset. Each row
(with four graphics) in the figure corresponds to the same mutation operator and each graphic
corresponds to 20 executions of the evolutionary method for 20 mutation probability values with
step 0.05. The blue curve represents fitness values against mutation values. The green curve represents
the mean fitness values from the four graphics in the same row and the pink lines state the standard
error bars.
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Figure A2. Mutation tests for mutation operators M1, M2, and M3 for the DS2 dataset. Each row of
four graphics in the figure corresponds to the same mutation operator and each graphic corresponds to
20 executions of the evolutionary method for 20 mutation probability values with step 0.05. The blue
line represents each fitness value for each mutation value. The green line represents the mean values
from the four graphics in the same row and pink lines state the standard error bars.
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Figure A3. Mutation tests for mutation operators M1, M2, and M3 for the DS3 dataset. Each row of
four graphics in the figure corresponds to the same mutation operator and each graphic corresponds to
20 executions of the evolutionary method for 20 mutation probability values with step 0.05. The blue
line represents each fitness value for each mutation value. The green line represents the mean values
from the four graphics in the same row and pink lines state the standard error bars.



Processes 2020, 8, 1565 20 of 23

References

1. Bandyopadhyay, S.; Pal, S.K. Classification and Learning Using Genetic Algorithms: Applications in
Bioinformatics and Web Intelligence; Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2007.

2. Bonelli, P.; Parodi, A. An efficient classifier system and its experimental comparison with two representative
learning methods on three medical domains. In Proceedings of the 4th International Conference Genetic
Algorithms (ICGA), San Diego, CA, USA, July 1991; pp. 288–295.

3. Hong, J.H.; Cho, S.B. The classification of cancer based on DNA microarray data that uses diverse ensemble
genetic programming. Artif. Intell. Med. 2006, 36, 43–58. [CrossRef] [PubMed]

4. Kumar, T.P.; Iba, H. Prediction of Cancer Class with Majority Voting Genetic Programming Classifier Using
Gene Expression Data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2009, 6, 353–367.

5. Kumar, R.; Verma, R. Classification Rule Discovery for Diabetes Patients by Using Genetic Programming.
Int. J. Soft Comput. Eng. IJSCE 2012, 2, 183–185.

6. Larranaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armañanzas, R.; Santafé,
G.; Pérez, A.; et al. Machine learning in bioinformatics. Briefings Bioinform. 2006, 7, 86–112.

7. Liu, K.H.; Xu, C.G. A genetic programming-based approach to the classification of multiclass microarray
datasets. Bioinformatics 2009, 25, 331–337. [CrossRef] [PubMed]

8. Maulik, U.; Bandyopadhyay, S.; Mukhopadhyay, A. Multiobjective Genetic Algorithms for Clustering:
Applications in Data Mining and Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2011.

9. na Reyes, C.A.P.; Sipper, M. Evolutionary computation in medicine: An overview. Artif. Intell. Med. 2000,
19, 1–23. [CrossRef]

10. Podgorelec, V.; Kokol, P.; Stiglic, M.M.; Hericko, M.; Rozrnan, I. Knowledge discovery with classification
rules in a cardiovascular dataset. Comput. Methods Programs Biomed. 2005, 1, 539–549. [CrossRef]

11. Soni, J.; Ansari, U.; Sharma, D.; Soni, S. Intelligent and Effective Heart Disease Prediction System using
Weighted Associative Classifiers. Int. J. Comput. Sci. Eng. IJCSE 2011, 3, 2385–2392.

12. Tsakonas, A.; Dounias, G.; Jantzen, J.; Axer, H.; Bjerregaard, B.; von Keyserlingk, D.G. Evolving rule-based
systems in two medical domains using genetic programming. Artif. Intell. Med. 2004, 32, 195–216.
[CrossRef]

13. Vargas, C.M.B.; Chidambaram, C.; Hembecker, F.; Silvério, H.L. Computational Biology and Applied
Bioinformatics; Chapter A Comparative Study of Machine Learning and Evolutionary Computation
Approaches for Protein Secondary Structure Classification; InTech: London, UK, 2011; pp. 239–258.

14. Wolberg, W.H.; Mangasarian, O.L. Multisurface method of pattern separation for medical diagnosis
applied to breast cytology. Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [CrossRef]

15. Lucas, P. Analysis of notions of diagnosis. Artif. Intell. 1998, 12, 295–343. [CrossRef]
16. Lucas, P. Prognostic methods in medicine. Artif. Intell. 1999, 15, 105–119. [CrossRef]
17. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. In Frontiers of Computer Science ;

Springer: Berlin/Heidelberg, Germany, 2019; [CrossRef]
18. Ramos, J.; Castellanos-Garzón, J.A.; González-Briones, A.; de Paz, J.F.; Corchado, J.M. An agent-based

clustering approach for gene selection in gene expression microarray. In Interdisciplinary Sciences:
Computational Life Sciences; Springer: Berlin/Heidelberg, Germany, 2017; Volume 9, pp. 1–13.

19. Castellanos-Garzón, J.A.; Ramos, J.; González-Briones, A.; de Paz, J.F. A Clustering-Based Method for Gene
Selection to Classify Tissue Samples in Lung Cancer. In 10th International Conference on Practical Applications
of Computational Biology & Bioinformatics, Advances in Intelligent Systems and Computing; Saberi Mohamad,
M., Rocha, M., Fdez-Riverola, F., Domínguez Mayo, F., De Paz, J., Eds.; Springer: Cham, Switzerland, 2016;
Volume 477, pp. 99–107.

20. Castellanos-Garzón, J.A.; Ramos, J. A Gene Selection Approach based on Clustering for Classification
Tasks in Colon Cancer. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2015, 4, 1–10. [CrossRef]

21. González-Briones, A.; Ramos, J.; De Paz, J.F. A drug identification system for intoxicated drivers based on
a systematic review. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2015, 4, 83–101.

22. Pappa, G.L.; Freitas, A.A. Evolving rule induction algorithms with multi-objective grammar-based
genetic programming. In Knowledge and Information Systems; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 19, pp. 283–309.

http://dx.doi.org/10.1016/j.artmed.2005.06.002
http://www.ncbi.nlm.nih.gov/pubmed/16102956
http://dx.doi.org/10.1093/bioinformatics/btn644
http://www.ncbi.nlm.nih.gov/pubmed/19088122
http://dx.doi.org/10.1016/S0933-3657(99)00047-0
http://dx.doi.org/10.1016/S0169-2607(05)80005-7
http://dx.doi.org/10.1016/j.artmed.2004.02.007
http://dx.doi.org/10.1073/pnas.87.23.9193
http://dx.doi.org/10.1016/S0004-3702(98)00081-2
http://dx.doi.org/10.1016/S0933-3657(98)00047-5
http://dx.doi.org/10.1007/s11704-019-8208-z
http://dx.doi.org/10.14201/ADCAIJ201543110


Processes 2020, 8, 1565 21 of 23

23. Alcalá-Fdez, J.; Sánchez, L.; García, S.; delJesus, M.J.; Ventura, S.; Garrell, J.M.; Otero, J.; Romero, C.;
Bacardit, J.; Rivas, V.M.; et al. KEEL: A software tool to assess evolutionary algorithms for data mining
problems. InSoft Computing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 13, pp. 307–318.

24. Fernández, A.; García, S.; Luengo, J.; Bernadó-Mansilla, E.; Herrera, F. Genetics-Based Machine Learning
for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Trans. Evol. Comput. 2010,
14, 913–941. [CrossRef]

25. Oyebode, O.K.; Adeyemo, J.A. Genetic Programming: Principles, Applications and Opportunities for
Hydrological Modelling. World Acad. Sci. Eng. Technol. Int. J. Environ. Ecol. Geol. Min. Eng. 2014,
8, 310–316.

26. Ghaheri, A.; Shoar, S.; Naderan, M.; Hoseini, S.S. The applications of genetic algorithms in medicine.
Oman Med. J. 2015, 30, 406–416. [CrossRef]

27. Karnan, M.; Thangavel, K. Automatic detection of the breast border and nipple position on digital
mammograms using genetic algorithm for asymmetry approach to detection of microcalcifications.
In Computer Methods and Programs in Biomedicine; Elsevier: Amsterdam, The Netherlands, 2007; Volume 87,
pp. 12–20.

28. Gudmundsson, M.; El-Kwae, E.A.; Kabuka, M.R. Edge detection in medical images using a genetic
algorithm. IEEE Trans. Med Imaging 1998, 17, 469–474. [CrossRef]

29. Bhandarkar, S.M.; Zhang, Y.; Potter, W.D. An edge detection technique using genetic algorithm-based
optimization. Pattern Recognit. 1994, 27, 1159–1180. [CrossRef]

30. Jiang, J.; Yao, B.; Wason, A.M. A genetic algorithm design for microcalcification detection and
classification in digital mammograms. In Computerized Medical Imaging and Graphics; Elsevier: Amsterdam,
The Netherlands, 2007; Volume 31, pp. 49–61.

31. Yao, B.; Jiang, J.; Peng, Y. A CBR driven genetic algorithm for microcalcification cluster detection. In
International Conference on Knowledge Engineering and Knowledge Management; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 494–496.

32. Bevilacqua, A.; Campanini, R.; Lanconelli, N. A distributed genetic algorithm for parameters optimization
to detect microcalcifications in digital mammograms. In Workshops on Applications of Evolutionary
Computation; Springer: Berlin/Heidelberg, Germany, 2001; pp. 278–287.

33. Baum, K.G.; Schmidt, E.; Rafferty, K.; Król, A.; Helguera, A. Evaluation of novel genetic algorithm
generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image
fusion. J. Digit. Imaging 2011, 24, 1031–1043. [CrossRef]

34. de Carvalho Filho, A.O.; de Sampaio, W.B.; Silva, A.C.; de Paiva, A.C.; Nunes, R.A.; Gattass, M. Automatic
detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index.
Artif. Intell. Med. 2014, 60, 165–177. [CrossRef] [PubMed]

35. Asuntha, A.; Singh, N.; Srinivasan, A. PSO, Genetic Optimization and SVM Algorithm used for Lung
Cancer Detection. J. Chem. Pharm. Res. 2016, 8, 351–359.

36. Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A. Genetic Bee Colony (GBC) algorithm: A new gene selection
method for microarray cancer classification. Comput. Biol. Chem. 2015, 56, 49–60. [CrossRef] [PubMed]

37. Latkowski, T.; Osowski, S. Computerized system for recognition of autism on the basis of gene expression
microarray data. Comput. Biol. Med. 2015, 56, 82–88. [CrossRef] [PubMed]

38. Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided
decision-making for heart disease detection using hybrid neural network-Genetic algorithm. Comput.
Methods Programs Biomed. 2017, 141, 19–26, [CrossRef] [PubMed]

39. Li, H.; Yuan, D.; Ma, X.; Cui, D.; Cao, L. Genetic algorithm for the Optimization of Features and Neural
Networks in ECG Signals Classification; Resreport 7, Scientific Reports; Springer Nature: Berlin/Heidelberg,
Germany, 2017.

40. Lin, T.; Huang, Y.; Lin, J.I.; Balas, V.E.; Srinivasan, S. Genetic algorithm-based interval type-2 fuzzy model
identification for people with type-1 diabetes. In Proceedings of the IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; pp. 1–6. [CrossRef]

41. Nguyen, L.B.; Nguyen, A.V.; Ling, S.H.; Nguyen, H.T. Combining genetic algorithm and
Levenberg-Marquardt algorithm in training neural network for hypoglycemia detection using EEG signals.
In Proceedings of the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International
Conference of the IEEE, Osaka, Japan, 3–7 July 2013; pp. 5386–5389.

http://dx.doi.org/10.1109/TEVC.2009.2039140
http://dx.doi.org/10.5001/omj.2015.82
http://dx.doi.org/10.1109/42.712136
http://dx.doi.org/10.1016/0031-3203(94)90003-5
http://dx.doi.org/10.1007/s10278-011-9382-1
http://dx.doi.org/10.1016/j.artmed.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24332156
http://dx.doi.org/10.1016/j.compbiolchem.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/25880524
http://dx.doi.org/10.1016/j.compbiomed.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25464350
http://dx.doi.org/10.1016/j.cmpb.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28241964
http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015425


Processes 2020, 8, 1565 22 of 23

42. Ocak, H. A medical decision support system based on support vector machines and the genetic algorithm
for the evaluation of fetal well-being. J. Med Syst. 2013, 37, 9913. [CrossRef] [PubMed]

43. Nyathi, T.; Pillay, N. Automated Design of Genetic Programming Classification Algorithms Using a Genetic
Algorithm. In Applications of Evolutionary Computation: 20th European Conference, EvoApplications 2017,
Proceedings of the Part II, Amsterdam, The Netherlands, 19–21 April 2017; Squillero, G., Sim, K., Eds.; Chapter
Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2017; Volume 10200, pp. 224–239. [CrossRef]

44. Naredo, E.; Trujillo, L.; Legrand, P.; Silva, S.; Muńoz, L. Evolving genetic programming classifiers with
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