
Y. Demazeau et al. (Eds,): 7th International Conference on PAAMS'09, AISC 55, pp. 20–29. 
springerlink.com                                                     © Springer-Verlag Berlin Heidelberg 2009 

Distributing Functionalities in a SOA-Based  
Multi-agent Architecture 

Dante I. Tapia, Javier Bajo, and Juan M. Corchado  

Departamento Informática y Automática 
Universidad de Salamanca 
Plaza de la Merced s/n, 37008, Salamanca, Spain 
{dantetapia, jbajope, corchado}@usal.es 

Abstract. This paper presents how functionalities are distributed my means of FUSION@, a 
SOA-based multi-agent architecture. FUSION@ introduces a new perspective for constructing 
multiagent systems, facilitating the integration with service-oriented architectures, and the 
agents act as coordinators and administrators of services. FUSION@ makes use of several 
mechanisms for managing and optimizing the services distribution. The results obtained dem-
onstrate that FUSION@ can efficiently distribute functionalities in dynamic scenarios at execu-
tion time. 

Keywords: Multi-Agent Systems, Services Oriented Architectures, Distributed Computing. 

1   Introduction 

Multi-agent systems are very appropriate for resolving problems in a distributed way 
[9]. Agents have a set of characteristics, such as autonomy, reasoning, reactivity,  
social abilities, pro-activity, mobility, organization, etc. which allow them to cover 
several needs for dynamic environments, especially ubiquitous communication and 
computing and adaptable interfaces. Agent and multi-agent systems have been suc-
cessfully applied to several scenarios, such as education, culture, entertainment, 
medicine, robotics, etc. [6], [15]. Moreover, the continuous advancement in mobile 
computing makes it possible to obtain information about the context and also to react 
physically to it in more innovative ways [9]. Nevertheless, complex systems need 
higher adaptation, learning and autonomy levels than pure BDI model [3]. This can be 
achieved by modelling the agents’ characteristics [21] to provide them with mecha-
nisms that allow solving complex problems and autonomous learning [7]. However, 
excessive complex mechanisms (e.g. data mining, genetic algorithms, indexing, learn-
ing techniques, visualization, etc.) can cause malfunctioning and crashes in multi-
agent systems developed with current technologies such as agent platforms. This is 
because developers tend to integrate all functionalities inside the agents’ internal 
structure, creating agents with high computational requirements. 

The Flexible User and ServIces Oriented multi-ageNt Architecture (FUSION@) 
[18] tries to solve this problem. One of the most important characteristics in  
FUSION@ is the use of intelligent agents as the main components in employing a  
service oriented approach, focusing on distributing the majority of the systems’  



 Distributing Functionalities in a SOA-Based Multi-agent Architecture 21 

functionalities into remote and local services and applications. The architecture pro-
poses a new and easier method of building distributed multi-agent systems, where the 
functionalities of the systems are not integrated into the structure of the agents; rather 
they are modelled as distributed services and applications which are invoked by the 
agents acting as controllers and coordinators. This approach optimizes usability and  
performance because it can be obtained lighter agents in terms of computational load. 

FUSION@ has been previously presented in related papers [18], however, this pa-
per focuses on describing how FUSION@ implements several mechanisms for opti-
mizing and managing functionalities and resources in dynamic environments. 
Through these mechanisms, FUSION@ facilitates the development of distributed 
multi-agent systems and the agents have the ability to dynamically adapt their behav-
iour at execution time. FUSION@ provides an advanced flexibility and customization 
to easily add, modify or remove applications or services on demand, independently of 
the programming language. It also formalizes the integration of applications, services, 
communications and agents. The proposed approach has been applied to a real sce-
nario to evaluate the performance in a multi-agent system for monitoring Alzheimer 
patients. 

In the next section, the specific problem description that essentially motivated this 
research is presented. Section 3 describes the main characteristics of the FUSION@ 
architecture and briefly explains the mechanisms for distributing and optimizing func-
tionalities and resources. Section 4 presents the results and conclusions obtained after 
testing the architecture in a real scenario. 

2   Problem Description and Background 

Excessive centralization of services negatively affects the systems’ functionalities, 
overcharging or limiting their capabilities. Classical functional architectures are char-
acterized by trying to find modularity and a structure oriented to the system itself. 
Modern functional architectures like Service-Oriented Architecture (SOA) consider 
integration and performance aspects that must be taken into account when functional-
ities are created outside the system. These architectures are aimed at the interoperabil-
ity between different systems, distribution of resources, and the lack of dependency of 
programming languages [5]. Services are linked by means of standard communication 
protocols that must be used by applications in order to share resources in the services 
network [1]. The compatibility and management of messages that the services gener-
ate to provide their functionalities is an important and complex element in any of 
these approaches. 

One of the most prevalent alternatives to these architectures is agents and multi-
agent systems technology which can help to distribute resources and reduce the cen-
tral unit tasks [1] [19]. A distributed agents-based architecture provides more flexible 
ways to move functions to where actions are needed, thus obtaining better responses 
at execution time, autonomy, services continuity, and superior levels of flexibility and 
scalability than centralized architectures [4]. Additionally, the programming effort  
is reduced because it is only necessary to specify global objectives so that agents  
cooperate in solving problems and reaching specific goals, thus giving the systems the 
ability to generate knowledge and experience.  



22 D.I. Tapia, J. Bajo, and J.M. Corchado 

Agent and multi-agent systems combine classical and modern functional architec-
ture aspects. Multi-agent systems are structured by taking into account the modularity 
in the system, and by reuse, integration and performance. Nevertheless, integration is 
not always achieved because of the incompatibility among the agents’ platforms (e.g. 
JADE agents with RETSINA or OAA agents). The integration and interoperability of 
agents and multi-agent systems with SOA and Web Services approaches has been re-
cently explored [1] [9]. Some developments are centred on communication between 
these models, while others are centred on the integration of distributed services, espe-
cially Web Services, into the structure of the agents [11] [14] [16]. Although these 
developments provide an adequate background for developing distributed multi-agent 
systems integrating a service oriented approach, most of them are in early stages of 
development, with little systems (if any) developed upon them so it is not possible to 
actually know their potential in real scenarios. Please refer to [18] for a detailed com-
parison of these approaches. 

3   FUSION@, A SOA-Based Multi-agent Architecture 

FUSION@ [18] is a modular multi-agent architecture, where services and applica-
tions are managed and controlled by deliberative BDI (Belief, Desire, Intention) 
agents, [3], [13], which mainly follows the principles of the THOMAS architecture 
[12]. Deliberative BDI agents are able to cooperate, propose solutions on very dy-
namic environments, and face real problems, even when they have a limited descrip-
tion of the problem and few resources available [2], [8]. There are different kinds of 
agents in FUSION@, each one with specific roles, capabilities and characteristics. 
This fact facilitates the flexibility of the architecture in incorporating new agents.  
FUSION@ defines four basic blocks which provide all the functionalities of the  
architecture. 

- Applications. Represent all the programs that can be used to exploit the system 
functionalities. They can be executed locally or remotely, even on mobile devices 
with limited processing capabilities, because computing tasks are largely delegated 
to the agents and services. 

- Agents Platform. This is the core of FUSION@, integrating a set of agents, each 
one with special characteristics and behaviour. An important feature in this archi-
tecture is that the agents act as controllers and administrators for all applications 
and services, managing the adequate functioning of the system, from services,  
applications, communication and performance to reasoning and decision-making.  

- Services. They are the bulk of the functionalities of the system at the processing, 
delivery and information acquisition levels. Services are designed to be invoked  
locally or remotely. Services can be organized as local services, web services, or 
even as individual stand alone services.  

- Communication Protocol. This allows applications and services to communicate di-
rectly with the agents’ platform. The protocol is completely open and independent 
of any programming language. This protocol is based on SOAP specification to 
capture all messages between the platform and the services and applications [5]. 
All external communications follow the same protocol, while the communication 
among agents in the platform follows the FIPA Agent Communication Language 



 Distributing Functionalities in a SOA-Based Multi-agent Architecture 23 

(ACL) specification. Applications can make use of agents platforms to communi-
cate directly (using FIPA ACL specification) with the agents in FUSION@, so 
while the communication protocol is not needed in all instances, it is absolutely  
required for all services. 

There are pre-defined agents that provide the basic functionalities of FUSION@. 
CommApp Agent is the agent is responsible for all communications between applica-
tions and the platform. It manages the incoming requests from the applications to be 
processed by services. It also manages responses from services (via the platform) to 
applications. All messages are sent to Security Agent for their structure and syntax to 
be analyzed. CommServ Agent is responsible for all communications between services 
and the platform. The functionalities are similar to CommApp Agent but backwards. 
Admin Agent signals to CommServ Agent which service must be invoked. All mes-
sages are sent to Security Agent for their structure and syntax to be analyzed. This 
agent also periodically checks the status of all services to know if they are idle, busy, 
or crashed. Directory Agent manages the list of services that can be used by the sys-
tem. For security reasons [17], FUSION@ does not include a service discovery 
mechanism, so applications must use only the services listed in the platform. How-
ever, services can be added, erased or modified dynamically. There is information that 
is constantly being modified: the service performance (average time to respond to re-
quests), the number of executions, and the quality of the service (QoS). This last data 
is very important, as it assigns a value between 0 and 1 to all services. All new ser-
vices have a quality of service (QoS) value set to 1. This value decreases when the 
service fails (e.g. service crashes, no service found, etc.) or has a subpar performance 
compared to similar past executions. QoS is increased each time the service effi-
ciently processes the tasks assigned. Supervisor Agent supervises the correct function-
ing of the other agents in the system. Supervisor Agent periodically verifies the status 
of all agents registered in the architecture by sending ping messages. If there is no re-
sponse, the Supervisor agent kills the agent and creates another instance of that agent. 
Security Agent analyzes the structure and syntax of all incoming and outgoing mes-
sages. If a message is not correct, the Security Agent informs the corresponding agent 
(CommApp or CommServ) that the message cannot be delivered. This agent also di-
rects the problem to the Directory Agent, which modifies the QoS of the service 
where the message was sent. Admin Agent decides which agent must be called by tak-
ing into account the QoS and users’ preferences. Users can explicitly invoke a service, 
or can let the Admin Agent decide which service is best to accomplish the requested 
task. This agent also checks if services are working properly. It requests the Comm-
Serv Agent to send ping messages to each service on a regular basis. If a service does 
not respond, CommServ informs Admin Agent, which tries to find an alternate service, 
and informs the Directory Agent to modify the respective QoS. Interface Agent was 
designed to be embedded in users’ applications. Interface agents communicate di-
rectly with the agents in FUSION@ so there is no need to employ the communication 
protocol, rather the FIPA ACL specification. The requests are sent directly to the Se-
curity Agent, which analyzes the requests and sends them to the Admin Agent. These 
agents must be simple enough to allow them to be executed on mobile devices, such 
as cell phones or PDAs. All high demand processes must be delegated to services. 



24 D.I. Tapia, J. Bajo, and J.M. Corchado 

3.1   Services Management 

FUSION@, and in particular the Admin Agent, employs a mechanism composed of a 
set of techniques that allows the architecture to select the most appropriate service to 
meet a request at any given time. The mechanism to assign the most appropriate ser-
vice to respond to this request begins when a new request is received, taking into  
account the following parameters: the QoS value; the user preferences; and the esti-
mated delivery time. The first two parameters are set in advance so it is not necessary 
to calculate by the Admin Agent. The execution time is estimated using a RBF (Radial 
Basis Function) Neural Network. The reason for using this type of network is the 
speed in the training phase, compared to a Multi Layer Perceptron (MLP). The neural 
network is made up of three layers: the input layer, an intermediate/hidden layer and 
an output layer. The number of neurons in the input layer is defined by the number of 
entries (i.e. parameters) to each service. In the case of arrays, each element counts as 
an entry to the service. The number of neurons in the middle layer is determined dy-
namically, making a cross-training and validation. The cross-validation is done 
through the method GCV (Generalized Cross-Validation) [19]. The variation in the 
number of neurons in the middle layer is made by the following algorithm. 

First are initialized the list of errors e = {} and the list of angles α = {}. Then the 
training is conducted with a neuron in the middle layer and the training value is stored 
in e1 in the values list e = e ∪ e1. Next, the number of neurons in the intermediate 
layer is initialized. If there is no prior training, it is initialized to 4n+1 where n is the 
number of neurons in the input layer. However, if there is a prior training, it is initial-
ized to 2n+1, where n is the number of neurons of the prior training. r is the number 
of neurons in the current layer. The training is conducted for r intermediate neurons 
and the error in er e = e ∪ er is stored. Subsequently, the training is done for r/2 neu-
rons and the error in er/2 e = e ∪ er/2 is stored. The lines that pass through the points 

)( 2/2/,1 rrr eer =  and )( 2/12/,1 rr eer =  are calculated and the angle 2/rα  formed 

by these lines is obtained. The angle 2/rα is introduced in the list of angles 

2/r∪= αα . If there is only one angle on the list of angles 1# =α then the value of 

r is set to r/4 and the training is restarted. If 2# =α , being iα the other existent 

value, then: If i<r/2 then r = r/2 and the training is restarted; else r = r/2+r/4 and the 
training is restarted. But selecting the two adjacent values to the left and right of 

2/rα  denoted by iα  and jα  so that: 

• If iα > jα  

i. If j=r/2+1 the value of neurons is set to r 
ii. Else, set the new value of r=r/2+(j-r/2)/2 

• Else 

i. If i=r/2-1 the value of neurons is set to r 
ii. Else, set the new value of r=r/2-(r/2-i)/2 

 



 Distributing Functionalities in a SOA-Based Multi-agent Architecture 25 

 

Fig. 1. Progression of the number of neurons in the hidden layer 

Finally, the training is carried out and the value of neurons in the intermediate 
layer is set to r. Figure 1 shows the progress of the algorithm searching the lower an-
gle α. The number of neurons in the middle layer is shown in the X axis and the cross 
validation is shown in the Y axis. The values correspond to a simulation, but for a real 
case there is only necessary to calculate the values that are obtained in the sets listed 
next. The sets of values studied at every moment are (23, 11, 1) (11, 5, 1) (17, 8, 1) 
(14, 7, 1) (20, 10, 1) (18, 9, 1). The end result is given by (18, 9, 1) therefore, the 
number of neurons in the final layer is 9. The output layer consists of a single neuron, 
whose output value is the time prediction. 

Learning consists of an unsupervised learning phase for the middle layer and other 
supervised learning phase for the output layer. A cross-validation is carried out at the 
training phase by varying the number of neurons in the intermediate layer in case of 
no new results obtained. First, the training of the middle layer and the output layer are 
carried out. The retraining of the network is carried out when the average time is k 
times larger or smaller than the estimated time for the last n executions. These values 
are defined in advance for each system. A cross-validation is done through the GVC 
method in order to determine the completion of the training.  

The available services can be assigned once the execution time of the requests in 
the queue is estimated. The assignation tries to maximize the performance in terms of 
the time required to respond to all requests. This assignation must be efficient and dy-
namically adaptable because it must be carried out in execution time. For this reason, 
a FIFO model has been chosen for each service. Each service has a queue associated. 
There is a common queue where all requests are queued and managed by the Admin 
Agent. The allocation to the queue of each service is done taking into account the re-
quests assigned to each queue and the estimated performance given by (1). The re-
quest is assigned to the queue in order to minimize the cumulative performance and 
the estimation time. 

)1()1( iii ptQoSr −⋅⋅−=            (1) 

Where: ri is the estimated performance of the service i; QoSi is the quality of service i 
which corresponds to a value between 0.00 and 1.00; T is the estimated time of dura-
tion; and Pi are the preferences for the service i with a value between 0 and 1. Being n 



26 D.I. Tapia, J. Bajo, and J.M. Corchado 

the number of services, Ri the cumulative performance for the queue i, a new request s 
with performance estimations for the service j rij will be assigned to the queue Ri when 
satisfying the following condition. If the value of the preference is equal to 1, only the 
queues with that value for the preference are taken into account. 

{ }inni rRrR ++ ,...,min 11
           (2) 

Assuming that it is assigned to the k queue, the new cumulated performance for 
the k queue will be Rk+rik and the queuing mechanism continues for the next service. 
Figure 2 shows a representation of the queuing mechanism. There is a primary queue 
associated with all services. Each request has an estimated performance rij and is  
associated with a queue until all queues are occupied. 

In this way, it is possible to assign the requests entering into the system to each of 
the available services. This leads to a better performance and optimization of re-
sources. 

 

Fig. 2. Services assignation through the queuing mechanism 

4   Results and Conclusions 

Several tests have been done to demonstrate if the mechanisms in FUSION@ are ap-
propriate to distribute resources and optimize the performance of multi-agent systems. 
Most of these tests basically consist on the comparison of two simple configurations 
(System A and System B) with the same functionalities. These systems are specifi-
cally designed to schedule a set of tasks using a planning mechanism [6]. System A 
integrates this mechanism into a deliberative BDI agent, while System B implements 
FUSION@, modelling the planning mechanism as a service. Table 1 shows an exam-
ple of the results delivered by the planning mechanism for both systems. An agenda is 
a set of non organized tasks that must be scheduled by means of the planning mecha-
nism or the planner service. There were 30 defined agendas each with 50 tasks. Tasks 
had different priorities and orders on each agenda. Tests were carried out on 7 differ-
ent test groups, with 1, 5, 10, 15, 20, 25 and 30 simultaneous agendas to be processed 
by the planning mechanism. 50 runs for each test group were performed, all of them 
on machines with equal characteristics. Several data have been obtained from these 
tests, focusing on the average time to accomplish the plans. For System B five planner 
services with exactly the same characteristics were replicated. 



 Distributing Functionalities in a SOA-Based Multi-agent Architecture 27 

Table 1. Example of the results delivered by the planning mechanism 

Time Activity 
19:21 Exercise 
20:17 Walk 
22:00 Dinner 

 

Fig. 3. Time needed for both systems to schedule simultaneous agendas 

Figure 3 shows the average time needed by both systems to generate the paths for a 
fixed number of simultaneous agendas. System A was unable to handle 15 simultane-
ous agendas and time increased to infinite because it was impossible to perform those 
requests. However, System B had 5 replicated services available, so the workflow was 
distributed, and allowed the system to complete the plans for 30 simultaneous agen-
das. Another important data is that although the System A performed slightly faster 
when processing a single agenda, performance was constantly reduced when new  
simultaneous agendas were added. This fact demonstrates that the overall perform-
ance of System B is better when handling distributed and simultaneous tasks (e.g. 
agendas), instead of single tasks. 

The FUSION@ architecture proposes an alternative where agents act as controllers 
and coordinators. The mechanisms implemented in FUSION@ can distribute re-
sources, exploiting the agents’ characteristics to provide a robust, flexible, modular 
and adaptable solution that covers most of the requirements of a wide diversity of pro-
jects. All functionalities, including those of the agents, are modelled as distributed 
services and applications. By means of the agents, the systems are able to modify 
their behaviour and functionalities at execution time. Developers can create their  
own functionalities with no dependency on any specific programming language or 
operating system.  

Initial results demonstrate that FUSION@ is adequate for distributing composite 
services and optimizing performance for multi-agent systems. The Admin Agent 
learns and reason, which facilitates the optimum distribution of tasks and reduces the 
processing for the rest of the agents in the system. Future work consists on applying 
this architecture into composite multi-agent systems, as well as extending the experi-
ments to obtain more decisive data from applications that consume multiple services 
with different capabilities in heterogeneous scenarios.  



28 D.I. Tapia, J. Bajo, and J.M. Corchado 

Acknowledgements. This work has been partially supported by the TIN2006-14630-
C03-03 and the IMSERSO 137/07 projects. Special thanks to Tulecom for the  
technology provided and the know-how supported. 

References 

1. Ardissono, L., Petrone, G., Segnan, M.: A conversational approach to the interaction with 
Web Services. In: Computational Intelligence, vol. 20, pp. 693–709. Blackwell Publishing, 
Malden (2004) 

2. Bratman, M.E.: Intentions, plans and practical reason. Harvard University Press, Cam-
bridge (1987) 

3. Bratman, M.E., Israel, D., Pollack, M.E.: Plans and resource-bounded practical reasoning. 
In: Computational Intelligence, vol. 4, pp. 349–355. Blackwell Publishing, Malden (1988) 

4. Camarinha-Matos, L.M., Afsarmanesh, H.: A Comprehensive Modeling Framework for 
Collaborative Networked Organizations. Journal of Intelligent Manufacturing 18(5), 529–
542 (2007) 

5. Cerami, E.: Web Services Essentials Distributed Applications with XML-RPC, SOAP, 
UDDI & WSDL, 1st edn. O’Reilly & Associates, Inc., Sebastopol (2002) 

6. Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care. 
IEEE Intelligent Systems, Special Issue on Ambient Intelligence 23(2), 19–25 (2008) 

7. Corchado, J.M., Bajo, J., De Paz, Y., Tapia, D.I.: Intelligent Environment for Monitoring 
Alzheimer Patients, Agent Technology for Health Care. In: Decision Support Systems. 
Eslevier, Amsterdam (in press, 2008) 

8. Georgeff, M., Rao, A.: Rational software agents: from theory to practice. In: Jennings, 
N.R., Wooldridge, M.J. (eds.) Agent Technology: Foundations, Applications, and Markets. 
Springer, New York (1998) 

9. Greenwood, D., Lyell, M., Mallya, A., Suguri, H.: The IEEE FIPA approach to integrating 
software agents and web services. In: Proceedings of the 6th international Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2007, Honolulu, Hawaii, 
pp. 1–7. ACM, New York (2007) 

10. Jayaputera, G.T., Zaslavsky, A.B., Loke, S.W.: Enabling run-time composition and sup-
port for heterogeneous pervasive multi-agent systems. Journal of Systems and Soft-
ware 80(12), 2039–2062 (2007) 

11. Li, Y., Shen, W., Ghenniwa, H.: Agent-Based Web Services Framework and Development 
Environment. In: Computational Intelligence, vol. 20(4), pp. 678–692. Blackwell Publish-
ing, Malden (2004) 

12. Ossowski, S., Julián, V., Bajo, J., Billhardt, H., Botti, V., Corchado Rodríguez, J.M.: Open 
Issues in Open MAS: An abstract architecture proposal. In: 12th Conferencia de la 
Asosciación Española para la Inteligencia Artificial (CAEPIA 2007), Salamanca, Spain, 
vol. 2, pp. 151–160 (2007) 

13. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-Infrastructure for 
JADE Agents. In: EXP - in search of innovation (Special Issue on JADE), Department of 
Informatics, University of Hamburg, Germany, pp. 76–85 (2003) 

14. Ricci, A., Buda, C., Zaghini, N.: An agent-oriented programming model for SOA & web 
services. In: 5th IEEE International Conference on Industrial Informatics (INDIN 2007), 
Vienna, Austria, pp. 1059–1064 (2007) 

15. Schön, B., O’Hare, G.M.P., Duffy, B.R., Martin, A.N., Bradley, J.F.: Agent Assistance for 
3D World Navigation. LNCS, vol. 1, pp. 499–499. Springer, Heidelberg (2005) 



 Distributing Functionalities in a SOA-Based Multi-agent Architecture 29 

16. Shafiq, M.O., Ding, Y., Fensel, D.: Bridging Multi Agent Systems and Web Services: to-
wards interoperability between Software Agents and Semantic Web Services. In: Proceed-
ings of the 10th IEEE International Enterprise Distributed Object Computing Conference 
(EDOC 2006), pp. 85–96. IEEE Computer Society, Washington (2006) 

17. Snidaro, L., Foresti, G.L.: Knowledge representation for ambient security. In: Expert Sys-
tems, vol. 24(5), pp. 321–333. Blackwell Publishing, Malden (2007) 

18. Tapia, D.I., Rodriguez, S., Bajo, J., Corchado, J.M.: FUSION@, A SOA-Based Multi-
Agent Architecture. Advances in Soft Computing Series, vol. 50, pp. 99–107. Springer, 
Heidelberg (2008) 

19. Tiwari, A.K., Shukla, K.K.: Implementation of generalized cross validation based image 
denoising in parallel virtual machine environment. Digital Signal Processing 14, 138–157 
(2004) 

20. Voos, H.: Agent-Based Distributed Resource Allocation in Technical Dynamic Systems. 
In: Proceedings of the IEEE Workshop on Distributed intelligent Systems: Collective in-
telligence and Its Applications (DIS 2006)., pp. 157–162. IEEE Computer Society, Wash-
ington (2006) 

21. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge 
Engineering Review, vol. 10(2), pp. 115–152. Cambridge University Press, Cambridge 
(1995) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


