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Abstract. As a popular nonlinear estimation tool, the sampling importance re-
sampling (SIR) filter has been applied with the expectation–maximization (EM) 
principle, including the typical maximum a posteriori (MAP) estimation and 
maximum likelihood (ML) estimation, for estimating the parameters of the state 
space model (SSM). This paper concentrates on an inevitable bias existing in 
the EM-SIR filter for estimating the dynamics process of the SSM. It is ana-
lyzed that the root reason for the bias is the sample impoverishment caused by 
the resampling procedure employed in the filter. A process noise simulated for 
the particle propagation that is larger than the real noise involved with the true 
state will be helpful to counteract sample impoverishment, thereby providing 
better filtering result. Correspondingly, the EM-SIR filter tends to yield a biased 
(larger-than-the-truth) estimate of the process noise if it is unknown and needs 
to be estimated. The bias is elaborated via a straightforward roughening ap-
proach by means of both qualitative logical deduction and quantitative numeri-
cal simulation. However, it seems hard to fully remove this bias in practice. 
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1 Introduction 

Nonlinear state space models (SSMs) widely exist in the field of control and signal 
processing, often in which the observed data may be used to estimate the parameter(s) 
of the model (in the process of estimating the state) if it is unknown. The goal of pa-
rameter estimation is to compute an estimate of the true parameter that can provide 
best match to the observations [1, 2, 3], on a specific principle such as the most typi-
cal expectation–maximization (EM) estimation including maximum a posteriori 
(MAP) estimation and maximum likelihood (ML) estimation. The EM could be im-
plemented in both batch and online manners [4]. This is also the main content of sys-
tem identification for the state estimation, for which the Bayes filter provides a useful 
solution. A powerful approximation of the Bayes filter for nonlinear SSMs is based 
on random sampling, namely Sequential Monte Carlo, which is often known as the 
particle filter. A variety of particle filters have been developed in the last two decades.  
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This paper concerns with estimating the state process noise by using the sampling 
importance resampling (SIR, also referred to as sequential importance sampling (SIS) 
and resampling, SISR) filter, which is the most commonly used type of particle filters 
and is the basis of most of the other types of particle filters. Based on SIS and resam-
pling, the SIR filter and its further extension have been applied for various parameter 
estimation for the state space model since they relaxes linearity and Gaussian assump-
tions; see some very recent work e.g. [5-7]. 

However, unwanted bias has been observed in experiments e.g. [1, 3, 8, 9] which 
could not be ruled out completely; see also [10]. This bias was abstractly attributed to 
the sample degeneracy [9, 10, 11] of the PF simulation for on-line Bayesian estima-
tion. That is, most of the particles will have negligible weights after a few iterations 
and, as a result, only few particles really work. The sample degeneracy is an inherent 
drawback of SIS and to combat it, resampling is often applied that is apparently repli-
cating high-weighted particles to replace low-weighted particles. However, this often 
comes at the price of generating a large number of particles of the same state (as they 
are replicated from the same patent particles) and small-weighted particles are dis-
carded, reducing particle diversity and causing sample impoverishment. The more 
serious the sample degeneracy, the more serious the sample impoverishment after 
resampling; see further explanation given in [12, 13]. It is fairer to attribute the bias of 
the SIR filter for parameter estimation to sample impoverishment rather than degene-
racy. This is a critical problem for the SIR filter’s application for parameter estima-
tion, in addition to the state estimation, but a specific discussion on this problem 
seems still missing.  

In this paper, we clarify the problem from a new perspective based on an in-depth 
analysis of the side-effect of resampling, with particularly regards to parameter esti-
mation of the dynamics noise of the SSM. It is formally demonstrated that the EM 
parameter estimation of the state process noise implemented by the SIR filter [3, 8, 9, 
14, 15, 16] suffer from a bias, i.e. the estimation of the process noise given by the 
EM-SIR filter is larger, statistically, than the truth. It is not the intention of this paper 
to go into details of any specific EM estimator or even the content of the SIR filter but 
instead, we focus on the statistical property of the SIR filter. 

The rest of the paper is organized as follows. Section 2 describes the qualitative 
logical deduction model and Section 3 presents the quantitative simulation evidences 
model. The simulation results and discussion are shown in Section 4. Finally, Section 
5 concludes the paper. 

2 Problem Statement 

In the context of the general non-linear SSM, it is often of great interest and signifi-
cance to estimate the parameter(s) of the model that can be time-varying during the 
process of estimating the state. The SSM consists of two recursive equations as shown 
in the following: 

( )11 , (state transition equation)k k kk kx f x θ−−=
 

 (1) 

( ), (observation equation)k k kk ky g x β=
 

 (2) 
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where k indicates time, xk denotes the state, yk denotes the observation, θk and βk de-
note noises affecting the state Markov process equation fk|k-1(·), and observation equa-
tion gk|k(·), respectively and this paper focuses particularly on estimating the static 
process noise θk by the SIR filter, i.e. for t=1, 2,…, k, θt= θ*, where θ* is a static  
parameter. 

Available solutions for the parameter estimation can be classified into two groups: 
MAP estimation (also called Bayesian estimation or approximate Bayesian computa-
tion [5]) and ML estimation. There are several well-established MAP estimation fil-
ters for sequentially learning both xt and θ, such as [1, 6, 17, 18], see the discussion 
and comparison in [19]. Bias issue has been pointed out in the online MAP estimation 
and is attributed to the degeneracy problem of the particle filter [9-11]. On the con-
trary, a different group of work [3, 5-7, 14] particularly focuses on the ML estimation 
and points out that the bias issue also exists in ML parameter estimation by using the 
SIR filter. It is demonstrated that this bias is independent of the Bayesian recursion 
path but instead it can occur at the very first step.  

Before we go into the logical deduction and simulation demonstration of the bias, 
the basic content of ML and MAP estimation is provided in the following context for 
clarification. Assuming that true noise θ* is involved with the state, generating obser-
vations y1:k and its value is unknown, our goal is to compute point estimates of θ* 
from the observations. In general ML principles, the estimate of θ* is the maximizing 
argument of the marginal likelihood of the observed data, which can be termed as: 

( )1:
ˆ arg max kp y

θ
θ θ

∈Ω
=   

  (3) 

where Ω is a specified parameter space, y1:k≜(y1, y2, ..., yk) denotes the history path of 
the observation process. For the detail of various implementations of the ML estima-
tion, the reader is refer to [3, 8, 9, 14] and the references therein.  

Given a prior distribution of θ*, the MAP estimate is  

( )
( ) ( )1:

1:

1:

( )ˆ arg max arg max ( )
( )

k

k

k

p y g
p y g

p y gθ θ
ϑ

θ θ
θ θ θ

ϑ ϑ∈Ω ∈Ω
= =

∫  
 (4) 

As shown, the difference between MAP and the ML estimates is the use of a prior 
distribution. However, the choice of prior will heavily influence quality of result of 
MAP as well as the Bayes posterior. 

3 Logical Deduction  

3.1 EM Estimation of the State Dynamics Noise 

Remark 1. ∀ two parameters θ1 and θ2 that are close-enough to each other in the 
monotonic domain of Eq. (3): if a better particle approximation of the posterior is 
obtained by using θ1 as the particle propagation noise parameter in the SIR filter than 
by using θ2, then the estimate of the true state dynamics noise parameter θ* obtained 
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by the SIR filter will be more likely closer to θ1 than to θ2, i.e. parameters θ1 is more 
likely to match the real observations than θ2 in the sense of likelihood or the posterior    

( ) ( )
( ) ( )

1: 1 1: 2

1: 1 1: 2

or

( ) ( )

k k

k k

p y p y

p y g p y g

θ θ

θ θ θ θ

>

>

， 

   
      (5) 

This Remark is just for the content of the ML or MAP principle and proof seems 
unnecessary here. By saying a better particle approximation of the posterior, it means 
that the underlying particle approximation of the state is closer to the real state distri-
bution and is therefore more likely to match the real observation. θ1 and θ2 are limited 
to be close enough with each other so as to eliminate any local maximum point  
between them, for monotonicity. 

3.2 Direct Roughening 

A critical step for the SIR filter is resampling [13] that is designed to reduce the 
weight variance. As a result of this, many particles may constitute the very similar or 
the same state i.e. they are replications of the same particle, leading to the so-called 
sample impoverishment problem. To counteract this problem, one effective solution is 
to spread the replicated particles by introducing additional noise, namely the roughen-
ing. This can be realized in two equivalent ways. One way is to increase the dynamics 
noise for particle propagation directly which is known as  direct roughening [20], and 
the other way is to apply roughening separately after resampling similar to the  
separate roughening scheme proposed in [21]; with similar idea called the ‘move step’ 
in [22]. 

In contrast to the state dynamics given in (1), the Markov process (called propaga-
tion) of the ith particle that is perturbed by a roughening noise r in the direct roughen-
ing approach, i.e. the proposal function, can be written as: 

( )( ) ( ) *
11 ,i i

k kk kx f x rθ−−= +
  

  (6) 

where θ*is the dynamics noise involved with the state and the roughening noise r is 
normally a zero-mean Gaussian N(0, Σr) distribution. In the case of sample impover-
ishment, the direct roughening helps to improve the approximation quality of the pos-
terior by spreading particles in the state space. It is vital to note that, over roughening 
(too significant r) however will lead to very dispersive distribution of particles and 
will conversely reduce the estimation accuracy. As long as the SIR filter suffers from 
sample impoverishment, we have 
 
Remark 2. ∀θ that is ‘slightly’ larger than θ *: the SIR filter that uses θ as the particle 
propagation noise will obtain better approximation of the posterior than uses θ*. 

This Remark is no more than a re-statement of the validity of the direct roughening 
strategy. It is worth nothing that θ is limited to be ‘slightly’ larger than θ* to eliminate 
any local peak between them, for monotonicity. 
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The theory suggests that the particle filter benefits from a sampling proposal func-
tion that that has a ‘heavier’ tail so that the filter is sensitive to the outliers [12]. This 
also indicates that the SIR filter can benefit from a comparably large state dynamics 
noise. Combining Remark 1 and 2, we can arrive at the assertion that the SIR filter 
will tend to yield a larger-than-the-truth estimate of the state dynamics noise in the 
forward-only filtering when sample impoverishment occurs. In fact, existing experi-
ments e.g. [1, 8, 9] have observed the bias but attributed the reason to the sample 
degeneracy without providing clear explanation. Furthermore, the effect of roughen-
ing has been verified in e.g. [21, 22]. In the following, further simulations are pro-
vided to demonstrate the bias of the EM-SIR filter for estimating the state Markov 
process noise. 

4 Simulation Demonstration 

As indicated by remark 1 and 2, a sufficient condition for the occurrence of the bias of 
the EM-SIR filter in estimation of the dynamics noise is that the filter benefits from 
the direct roughening approach, which will be demonstrated quantitatively below. 
Without the loss of generality, we consider estimating the static dynamics noise in a 
classical 1-dimensional SSM as follows: 

( ) ( )( )1
1 2

1

25
0.5 8cos 1.2 1

1
k

k k

k

x
x x k

x
θ−

−
−

= + + − +
+

 

  (7) 

20.05k ky x β= +     (8) 

 
where Gaussian noise θ~N(0, Q), β~Ν(0, 1), Q is the unknown variance of the zero-
mean Gaussian Markov process noise to be estimated. Without the loss of generality, 
the state xk evolves with the dynamics noise with variance Q*=1. 

In order to evaluate the estimation accuracy, the RMSE (root mean square error) is 
used for evaluation, which is defined as follows: 

( )
1/ 2

2

1

1
ˆRMSE=

T

k k
k

x x
T =

⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

 
  (9) 

where ݔො௞is the estimate of the state xk which is the mean state of all particles. Never-
theless, the RMSE is unavailable in practice since the true state xk is unknown. Hence, 
the RMSD (root mean square discrepancy) between the estimated observation ŷk and 
the real observation yk are defined as a measurement of the likelihood for batch  
parameter estimation as: 

( )
1/ 2

2

1

1
ˆRMSD=

T

k k
k

y y
T =

⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

 
   (10) 

where ݕො௞ ൌ  .ො௞ݔ0.05
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In order to capture the average performance, the simulation length is set to T=1000 
steps and each simulation runs 500 trials.  

In the first simulation, four bootstrap SIR filters are designed that apply Q=1, 1.1, 
1.2 and 1.5 respectively for particle propagation. Q=Q*=1 is the basic SIR filter and 
Q=1.1, 1.2 and 1.5 are roughening-enhanced. Their average RMSEs are given in 
Fig.1, which show that roughening-enhanced SIR filters perform better than the basic 
SIR filters. Especially when the number of particles is small (e.g. between 20~60), the 
sample impoverishment is getting more serious and therefore roughening is more 
helpful. Just as the impoverishment is case specific, the effectiveness of the roughen-
ing approach for the SIR filter also varies on case by case basis see the discussion 
given in [20] therein, which is a multi-dimensional SSM. This indicates that the bias 
of the SIR filter is also case specific. 

In the second simulation, the SIR filter uses different parameters Q (from 0.5 to 4 
with interval 0.1) and the same 50 particles. The average RMSE and RMSD results 
are plotted in Fig.2, which provide more details of the bias of the SIR filter in terms of 
estimating Q. As indicated, the RMSE result compared with the red dotted line, the 
SIR filter benefits from a state dynamics noise that is larger, but not too much to pre-
vent overshooting, than that involves with the true state. 

It is worth noting that, RSMD is not monotonically proportional with RMSE in the 
whole domain but instead, the larger the Q used for the particle propagation, the 
smaller the RMSD. Now that RMSD can be used as a measure for forward-only off-
line/batch estimation of Q*, while the maximum likelihood estimate of Q shall consti-
tute a value that is larger than the real Q*=1 in the most basic sense. This directly 
demonstrates that the SIR filter can yield a larger-than-the-truth estimate of (the vari-
ance of) the state dynamics noise, although here we did not specify the gradient used 
to search for the optimal parameter.  

As stated, more experimental evidences of online parameter estimation can be 
found in e.g. [1, 8, 9] which are consistent with our assertion. As the importance sam-
pling theory suggest, the simulation result can be interpreted as that the particle filter 
benefits from a sampling proposal with a heavy tail that is insensitive to the outliers. 
This in turn can be taken as that a smoother distribution enjoying better particle diver-
sity to alleviate the sample impoverishment. Based on this, we conclude that the sam-
ple impoverishment is the primary cause of the bias of the SIR-like filter in parameter 
estimation of the SSM. Therefore, attentions shall be paid to the use of the SIR-like 
filter for estimating the dynamics parameters of the SSM, which includes not only the 
process noise but also the state transition function. 
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Fig. 1. RMSE against different number of particles 

 

Fig. 2. RMSE and RMSD against different Q used in the filter 

5 Conclusion 

Based on the findings that a comparably large noise used for the particle propagation 
helps to alleviate the sample impoverishment caused by resampling and will therefore 
produce better approximation of the posterior, we assert that the EM-SIR filter tends 
to yield a biased (larger than the truth) estimate of the state dynamics noise. This has 
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been elaborated by means of both qualitative deduction and quantitative simulations. 
However, the sample degeneracy and impoverishment can hardly be ruled out com-
pletely and so is the bias of the EM-SIR filter for the estimation of the dynamics 
noise. Therefore, one must be careful with the use of the SIR filter for parameter es-
timation. More concerns on the use and misuse of Bayes filters can be found in [23]. 
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