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Abstract. Quartz crystal microbalance (QCM) sensors are used to measure and 
classify odors. In this paper, we use seven QCM sensors and three kinds of 
odors. The system has been developed as a virtual organization of agents using 
the agent platform called PANGEA (Platform for Automatic coNstruction of 
orGanizations of intElligents Agents), which is a platform to develop open mul-
ti-agent systems, specifically those including organizational aspects. The main 
reason that justifies the use of the agents is the scalability of the platform; that 
is, the way in which it models the services. The functionalities of the system are 
modeled as services inside the agents, or as SOA (Service Oriented Approach) 
architecture compliant services using Web Services. In this way, it is possible to 
improve odor classification systems with new algorithms, tools and classifica-
tion techniques. 

Keywords: Odor sensing, odor classification, multi-agent systems, virtual or-
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1 Introduction 

During the last years, major advances have been made in the field of Ambient Intelli-
gence [1], [2], which has come to acquire significant relevance in the daily lives of 
people [5], [6], [7]. Ambient Intelligence adapts technology to people’s needs by pro-
posing 3 concepts: ubiquitous computing, ubiquitous communication and intelligent 
user interfaces. The development of new frameworks and models to allow informa-
tion access, independently of the location, is needed in order to achieve these targets. 
Wireless sensor networks [3], [4], [22], provide an infrastructure, which is able to 
distribute communications in dynamic environments by incrementing mobility and 
efficiency independently of the location. Sensor networks interconnect a large amount 
of sensors and manage information in the intelligent environment. Many times infor-
mation management is done in a distributed way. However, it is necessary to have 
distributed systems with enough capabilities to manage sensor networks in an effi-
cient way and to include elements with some degree of intelligence that can be  
embedded in the devices and act both autonomously and in coordination with the 
distributed system. Multi-agent systems are a suitable alternative to perform this type 
of systems. 
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There are several proposals to build smart environments that combine multi-agent 
systems and sensor networks [8], [9], [10], [11], [12], [13] , [14], [15], [16], [17], 
[18], [19], [20], [21]. New approaches are needed to support evolutional systems and 
to facilitate their growth and runtime updates. The dynamics of open environments 
have promoted the use of Virtual Organizations of Agents (VOs). A VO [25], [26], 
[27], [28], [29] is an open system designed for grouping; it allows for the collabora-
tion of heterogeneous entities and provides a separation between the form and  
function that define their behavior.  However, it is not possible to find an existing 
multi-agent architecture to work on the concept of virtual organizations and to pro-
vide agents capable of working with any type of sensor or device. This article consid-
ers different types of odor sensors and aims to classify odors according to sensing 
data by using quartz crystal microbalance (QCM) sensors. QCM sensors are sensitive 
to odors and allow the precise measurement of odor data. Using many QCM sensors, 
we will attempt to classify various kinds of odors based on neural networks. To model 
the system, virtual organizations of agents, which are capable of bringing a greater 
number of possibilities, are presented. These agents are connected with PANGEA 
[23], a multi-agent platform designed on the basis of virtual organizations, aimed at 
the creation of intelligent environments. 

Over the last decade, odor-sensing systems (called electronic nose (EN) systems) 
have undergone important developments from a technical and commercial point of 
view. EN refers to the ability to reproduce the human sense of smell by using sensor 
arrays and pattern recognition systems [30].  

The authors in [31] present a type of an EN system to classify various odors under 
the various densities of odors based on a competitive neural network by using learn-
ing vector quantization (LVQ). The odor data were measured by an odor sensor array 
made of MOGSs. We used fourteen MOGSs of FIGARO Technology Ltd in Japan. 
We considered two types of data for classification in the experiment. The first type 
included four types of teas, while the second included five types of coffees with simi-
lar properties. The classification results of teas and coffees were approximately 96% 
and 89% respectively, which was much better than the results in [32], [24]. 

The article is structured as follows. First, the PANGEA platform is described in 
section 2, detailing the structure of the virtual organizations used in the odor classifi-
cation case study. Both the platform and virtual organizations are evaluated in a case 
study consisting of an intelligent environment for odor recognition. Finally the results 
of the case study and the conclusions reached from this research are presented. 

2 Case Study: Development of a VO for Odor Classification 

This central section of the article presents the integration of the system and the sen-
sors used in the multi-agent architecture, and explains the main concepts of QCM 
sensors. In addition, an overview of the odor sensing system and the measures of odor 
data used are described. 
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2.1 Integration in a Multi-agent Platform (PANGEA) 

With the development of ubiquitous and distributed systems, it is interesting to have 
new agent platforms that facilitate the development of open agent-architectures that 
can be deployed on any device. PANGEA [23] is an agent platform based on organi-
zational concepts. It can model and implement all kinds of open systems, encouraging 
the sharing of resources and facilitating control of all nodes where the different agents 
are deployed. 

It is essential to have control mechanisms that enable new devices to be included in 
a single platform where they can be easily integrated, managed and monitored. In this 
case PANGEA, with its model of agents and organizations, provides the necessary 
features to function as the base platform when developing a comprehensive system. 

In order to facilitate control of the organization, PANGEA has several agents that 
are automatically deployed when starting the platform operation: OrganizationMa-
nager and OrganizationAgent are in charge of the management of the organizations 
and suborganizations; InformationAgent is in charge of accessing the database con-
taining all pertinent system information; ServiceAgent is in charge of recording and 
controlling the operation of services offered by the agents; NormAgent is in charge of 
the norms in the organization; and CommunicationAgent is in charge of controlling 
communication among agents, and recording the interaction between agents and or-
ganizations.  

In addition to the intrinsic PANGEA agents, the organizations developed in the 
present system are the following: 

─ Odor-recognition sensors organization. In this organization all agents belonging to 
an individual odor recognition system is deployed. Such agents may also be of dif-
ferent types (sensor agents, interface agent and identifier agent).  

─ Sensor control central organization. In this organization the agent interface type is 
included, representing each of the odor-recognition sensors organizations together 
with an adapter agent. 

Communication in this case is restricted only to the existing agents in the same or-
ganization, in addition to the control agents that the PANGEA platform offers (as is 
the case of the Information Agent, which accesses the database). 

Each type of agent is engaged in a well-defined task, as explained below: 

─ Sensor agent. It is exclusively dedicated to performing sensor readings and provid-
ing the latest value when an authorized agent requires such data. 

─ Identifier agent. Its function is to perform the necessary calculations for the identi-
fication of odors. It makes use of the ability to communicate with the sensor 
agents, which require the data needed to perform these calculations. 

─ Interface agent. This kind of agent is present in the two types of virtual organiza-
tions cited. It is responsible for providing a communication link with the agents 
outside their own organization of odor-recognition sensors that are authorized to 
establish two-way communications using the appropriate communication format. 
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Fig. 3. LVQ structures 
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layer as shown in Fig. 3. 
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learning vector quantization method as shown in Fig. 3. Learning vector quantization 
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The learning method is given by the following steps: 
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T is the total iteration number for learning, n is the number of input, M is the number 
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where  

                               1 . 
If the input vector and neuron c belong to the different class, then 
change  by using the following equation: 1 ,                                                    1 , . 

Step 4.  If t<T, Go to Step 2 
Using the above recursive procedure, we can train the odor data. 

2.3 Principle of QCM Sensors 

The QCM has been well-known to provide very sensitive mass-measuring devices in 
nanogram levels. Synthetic polymer-coated QCMs have been studied as sensors for 
various gas works as a chemical sensor. The QCM sensors are made by covering the 
surface with several kinds of a very thin membrane with about 1 mm, as shown in 
Fig. 4. The QCM sensor is integrated into a resonance circuit. If the film absorbs the 
odor molecules, the oscillation frequency is reduced since the mass of the vibrator is 
changed. 

Therefore, the frequency (of the QCM) will change according to the deviation of 
the weight due to the adsorbed odor molecular (odorant). In this paper we have used 
the materials shown in Table 1. The basic approach used here is a sol-gel method. The 
process is a wet-chemical technique used for the fabrication of both glassy and ceram-
ic materials. The manufacturing of a film was done by the following procedure. 

MTMS (1): Trimethylsilane, ethanol, water and nitric acid. (2) Once stirred, 2-
ethyl acrylate (PFOEA) was added to a solution of 1. 

Here, HTMS: C  and PFOEA: F C  

Table 1. Chemical materials used as the membrane.We used seven sensors using a solution of 
three types of in this paper. 

 

, (0.015g),30%HN (10μL),
, (0.030g),30%HN (10μL),
,30%HN (10μL),
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Fig. 6. Permeater and QCM sensors 

Table 2. Kinds of odors measured in this experimet 

 

2.5 Measurement of Odor Data 

We have measured four types of odors as shown in Table 2. The sampling frequencies 
are 1[Hz]. Diffusion tubes are used to control the density of gases. This is because it 
is possible to generate the gas at various concentrations by using a diffusion tube 
through Permeater. Odor data are measured for 900 [s]. They may include impulsive 
noises due to the typical phenomena of QCM sensors. To remove these impulsive 
noises we adopt a median filter which replaces a value at a specific time by a median 
value among neighboring data around the specific time. In  Fig. 7 we show the mea-
surement data for the symbol A where the horizontal axis is the measurement time 
and the vertical axis is the frequency deviation from the standard value (20M[Hz]) 
after passing through a three-point median filter. 

  

Fig. 7. Measurement of odor data 

p

Symbols Kind of odors

A ethanol

B toluen

C ethly acetatate
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Here, seven sensors are used. The maximum value for each sensor among seven 
sensors is selected as a feature value for the sensor. Therefore, for one odor, there are 
seven sensor values, which will be used for classification. 

3 Conclusions and Results 

In order to classify the feature vector by using error-back propagation, we allocate the 
desired output for the input feature vector, which is a seven-dimensional vector, as 
shown in Table 3. By adding the coefficient of variation to the usual feature vector, 
the variations for odors are reduced. The training was performed until the total error 
was less than or equal to 1×10−2 where η=0.8. 

Table 3. Training data set for ethanol (A), toluene (B), and ethyl acetate (C) 

Symbols Output A Output B Output C 
    A 1 0 0 

    B 0 1 0 

    C 0 0 1 

 
We have examined two algorithms, a learning vector quantization, and error back 

propagation. In learning vector quantization and error back propagation, the training 
sample number P’= 8 and test sample number is three. 

The total number of classification of 100 test samples is checked. The results are 
summarized in Table 4 and Table 5. 

Table 4. Classification results for learning vector classification (LVQ) 

Odor data 
Classification results (97%) 
A B C Correct 

A 100 0 0 100 

B 1 97 2 97 

C 4 1 95 95 

Table 5. Classification results for layered neural networks 

Odor data 
Classification results (88%) 
A B C Correct 

A 86 14 0 86 

B 14 84 2 84 

C 2 3 95 95 

 
We have presented the reliability of a new EN system designed from various kinds 

of QCM sensors. We have shown that after training the neural network for each odor, 
we were able to classify the original odor from the mixed odors in the case of two 
odors.  
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In addition, we have proposed and developed a multi-agent system which is able to 
increment the percentage of correct outputs and reduce the training time by sharing all 
the data between other similar odor detecting systems, and correcting the error be-
tween their sensors. The multi-agent system implemented in PANGEA performs 
communication, control and data management services in a distributed and flexible 
way. In the case study presented, a classification method is implemented. However 
the use of PANGEA makes it possible to extend the system by using new methods for 
the classification of odors and making the system scalable in terms of functionality. 
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