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Joint Smoothing, Tracking, and Forecasting Based
on Continuous-Time Target Trajectory Fitting

Tiancheng Li, Huimin Chen, Shudong Sun, and Juan M. Corchado

Abstract—We present a continuous time state estimation
framework that unifies traditionally individual tasks of smooth-
ing, tracking, and forecasting (STF), for a class of targets
subject to smooth motion processes, e.g., the target moves with
nearly constant acceleration or affected by insignificant noises.
Fundamentally different from the conventional Markov transition
formulation, the state process is modeled by a continuous trajec-
tory function of time (FoT) and the STF problem is formulated
as an online data fitting problem with the goal of finding the
trajectory FoT that best fits the observations in a sliding time-
window. Then, the state of the target, whether the past (namely,
smoothing), the current (filtering) or the near-future (forecasting),
can be inferred from the FoT. Our framework releases stringent
statistical modeling of the target motion in real time, and is
applicable to a broad range of real world targets of significance
such as passenger aircraft and ships which move on scheduled,
(segmented) smooth paths but little statistical knowledge is given
about their real time movement and even about the sensors. In
addition, the proposed STF framework inherits the advantages
of data fitting for accommodating arbitrary sensor revisit time,
target maneuvering and missed detection. The proposed method
is compared with state of the art estimators in scenarios of either
maneuvering or non-maneuvering target.

Index Terms—Trajectory estimation, data fitting, target track-
ing, filtering, smoothing, forecasting

I. INTRODUCTION

YNAMIC state estimation, e.g., tracking the movement

of an aircraft or a car, has been widely required in
engineering, which basically concerns inferring the latent state
of interest based on discrete time series noisy observations
[1]-[3]]. The time of interest may be the past (usually referred
to as smoothing), the present (filtering or tracking) or the
future (prediction or forecasting). In this paper, we present
an estimation framework that unifies the tasks of smoothing,
tracking, and forecasting (STF), and accommodates the sce-
nario of little a prior statistical information about the target
and imperfect sensors that possibly suffer from unknown noise
statistics and missed detections. For this challenging goal,
this paper focuses on a specific class of targets that move
in smooth patterns (e.g., moves in predefined runways and/or
with nearly constant velocity/acceleration). While we do not
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make a rigorous definition of the “smoothness”, we note that
it corresponds to an important class of real world targets
involved in air/maritime/space traffic management where for
the passengers’ safety, no abrupt and significant changes
should be made on the movement of the carrier.

The remainder of this paper is organized as follows. Section
outlines the motivation and key contribution of our work.
Two major challenges to the popular HMM (hidden Markov
model) framework are also discussed. Section [L1I| presents our
proposal for modeling the target motion by a deterministic
trajectory function of time (FoT) and details how to obtain
it from the online sensor data series. Section addresses
joint STF based on the trajectory FoT. Section [V] reviews
related works on trajectory estimation and sensor data fitting in
wide disciplines, highlighting the innovation of our approach.
Section [VI] provides simulation studies to demonstrate the
effectiveness of the proposed STF framework on a variety of
typical scenarios with comparison to state-of-the-art smoothers
and filters. Section concludes the paper.

II. MOTIVATION AND KEY CONTRIBUTION

Generally speaking, system modeling is the prerequisite for
estimation, which describes how we understand the system and
the observation data. The goal of modeling is twofold: one is
to relate the sensor observation to the latent target state by an
observation function, and the other is to relate the target state
to the time by a state function. The former explains how the
data are generated from the target state, and the latter explains
how the target state evolves over time. Usually, the statistical
property of the sensor is easy to be estimated or given a priori
and so can be considered time-invariant while that of the latent
target is unknown, complicated and time-varying, offering no
real time information to the tracker.

Due to the repetitively revisit nature of sensors, the obser-
vation function is commonly formulated in discrete time series
as

Vi = hi(Xk, Vi), (1)

where k € N indicates the time-instant, x; € RP= denotes the
Dy-dimensional state, y; € RP> denotes the D, -dimensional
observation (also called measurement), and v, € RP> denotes
the observation noise.

In contrast, there are different ways to model the target mo-
tion, which rests on the root of different estimation approaches.
First, one may infer the state directly from the observation via
maximum-likelihood estimation (MLE) or direct observation-
to-state projection [4]]-[6], without relying on any statistical
assumptions on the state process. This class of “data-driven”
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solutions will yield good results when the sensor data are
highly informative (namely, the noise is very small), and are
gaining favor when little is known about the motion model of
the target, or when it is simply not interested/worthwhile or
too hard to approximate one. Benefit to do so can particularly
be seen in the context of visual tracking [7]], [8] and chaotic
time series [9]-[11]], where the target (e.g., pedestrian) motion
is hard to be correctly/precisely modeled. However, in general,
when there is any model information about the target dynam-
ics, it should be carefully evaluated and utilized. This forms
the majority of the existing efforts for estimation and the way
to do so distinguishes our approach from the others.

The prevailing, considered the standard, “model-driven”
estimation solution is to apply a hidden Markov model (HMM)
to link the target state over time, for online recursive com-
puting. The best known methodology in this category is the
sequential Bayesian inference, for which a filter consisting
of prediction and correction steps is applied iteratively [12].
The HMM can be written in either discrete-time (mainly
for convenience) or continuous-time (which is the nature of
reality), as given by difference equation (2a) and differential
equation (2b), respectively,

Xk = gr(Xk—1,Ug), (2a)
dx
— = o(xe ), (2b)

where ¢t € R indicates continuous time, u;, € RPx and u; €
RP= denote the discrete time and continuous time state process
noises, respectively.

A. Challenges to HMM

o Challenge 1 Difficulties involved in statistical modeling
and full Bayes posterior computing, leading to inevitable
model error and approximate computation, respectively.

All target models with parameters are no more than sta-
tistical simplification to the truth and inevitably suffer from
approximation errors and disturbances. Challenges involved
in system modeling/identification have been noted in several
aspects, e.g., the model must meet practical constraints [[12]—-
[15] and match the sensor revisit rate [[12] while noises need
to be properly identified [16]-[18]]. In particular, the noise
uy/u, represents the uncertainty of the state process model,
which has to be modeled with respect to the occasionally
irregular revisit rate of the sensor (including missed detection,
delayed or out of sequence measurements). Instead, there are
also a few works using a deterministic Markov transition
model [[11]], [19]-[25]] which does not define the state process
noise/uncertainty item; see further discussion given in Section
[V-Al In fact, in the majority of practical setups, the ground
truth is deterministic conditioned on which, the Bayesian
Cramér-Rao lower bounds (CRLB) do not provide a lower
bound for the conditional mean square error (MSE) matrix [26]
and so correspondingly, no Bayesian filters can yield Minimum
MSE estimate.

One of the main reasons for the popularity of HMMs is the
friendly assumption that states are conditionally-independent
given the previous state. This allows easy forward-backward

recursive inference, namely prediction-smoothing, but also
severely limits the temporal dependencies that can be modeled
which invites many alternatives [27]-[29]. However, recursive
estimators of the prior-updating format are vulnerable to the
prior bias. Once an estimate bias is made, whether due to
erroneous modeling, disturbances or over approximation, it
will propagate in recursions and can hardly be removed [4]]
unless a sliding time window or fading factor is used to adjust
or re-initialize the estimator. A biased prior will likely not
benefit the filter, especially when the observation is of high
quality but instead, the filter may perform worse than the
observation-only (O2) inference [4]], [S]]. This fact however has
been overlooked. While “it is hard to overstate the importance
of the role of a good model” [|30]] for any model-driven tracker,
model validation [31f], [32] has few been investigated.

Even if the statistical models, uncertainties and constraints
regarding the target (quantity and dynamics), sensor profiles
(e.g., missed detection, clutter) and the scenario background
can all be well approximated, the full Bayesian computation
(or even the likelihood alone [33], [34]) that involves in-
tegration over an infinite state space could be prohibitively
expensive, forcing the need for further approximation. This
crucial challenge to real time computation and sensitivity to
model-error will be escalated with the increasing revisit rate
and joint use of advanced sensors [5]], [6].

o Challenge 2 Strictness of the Markov-Bayes iteration
that works on exact model assumptions and uses only
limited statistical information while omitting others such
as linguistic/fuzzy information.

Most model-driven estimators may work promisingly, e.g.,
minimizing the MSE, provided that the model assumptions
come proper. However, many unexpected issues can occur in
reality such as false, missing, morbid, biased, disordered data
that are intractable for modeling and entail additional robust
or adaptive processing schemes. This has formed the majority
of extensions of the model-driven framework, e.g., a huge
number of works for noise covariance estimation [17[, but
also formed new challenges to the real time implementation
due to escalated computational requirement. More importantly,
it is unclear how to optimally use some important but fuzzy
information such as a linguistic context that the target moves
close to a straight line, which might not be easily defined
as constraints [14]], [[15[], [35]-[37]] and [2, Chapter 6]. This
class of information is very common and useful to targets
like aircraft, satellites, large cruise ships, and trains, which
are supposed to move on pre-defined runways.

To alleviate these problems while gaining higher algorithm
flexibility, we now substitute the stepwise Markov transition
model with a deterministic FoT for describing the target
motion. The resulting trajectory function that best fits the
online sensor data series allows joint filtering, smoothing and
forecasting while requiring fewer assumptions on the target
motion and the background.

B. Main contribution of our work
At the core of our approach is a continuous-time trajectory

function which is used to replace HMM for describing the
target dynamics, i.e.,
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x¢ = f(t). 3)

Combining the observation function (I} and the trajectory
FoT (B) leads to an optimization problem for minimizing the
sensor data fitting error. This can be written as

k2
argmin Z | ye — he(F(t),ve) ], )
FQ@) 4=,

where || a—b || is a measure of the distance between a € RP»
and b € RP¥ such as the square error as in the least squares
estimation, F'(t) is the FoT to be estimated based on the data
provided in the underlying time-window [k1, k2] and v is an
average to compensate for the observation error (if anything is
known) and can be specified as the noise mean E[v;] if known
or otherwise as zero by assuming the sensor unbiased. Since
the estimate F'(t) needs to be updated at each time k when
a new observation is received, we denote the FoT obtained
at time k as F(t). As the default, k5 = k, ensuring that the
newest observation data are used in the fitting.

To incorporate useful model information such as a linguistic
description that “the target is free falling” or “the target
passes by a station”, the FoT can be more definitely specified
as F(t;Cy) of an engineering-friendly format such as a
polynomial, with certain parameters C; to be estimated which
reflects the a priori model information and fully determine the
FoT at time k. To this end, the formula may be extended
to a constrained version, such as

ka2

argmin Z | y¢ — he(F'(t; Cr), Vi) ],
F(t:Cx) t—k,

st.  F(t;Cy) €5,

®)

where § is a finite set of specific functions, such as a set of
polynomials of no more than 3-order.

Another common strategy to integrate the model informa-
tion into the optimization formula is to additionally define a
penalty factor Q(C},) on the model fitting error as a measure of
the disagreement of the fitting function to the model constraint
a priori. For instance, one can define Q(Cy) :=|| F(to; Ck) —
Xo || to measure the mismatch between the fitting trajectory
and the known state x that the target passes by/close-to at
time ty. Then, the formula @[) is extended to

k2

argmin Y || y; — he(F(t; Cr), 1) || +AQ(C),
F(t:C%) 4—f,

(6)

where A > 0 controls the trade-off between the data fitting
error and the model fitting error.

In this paper, we focus on a class of realistic targets of
significance including the passenger aircraft or ship that moves
in well-designed smooth routines (aside of which the tracker
is given no other statistical information) and ballistic targets
that are subject to the (nearly) constant velocity, acceleration or
turn-rate. The challenge arises as that no quantitative statistical
information is available about the target dynamics. Therefore,
we will not explicitly define a quantized penalty function
Q(Cy) to account for the model fitting error at present,

but instead directly assume the trajectory being a FoT of
specified format, e.g., a polynomial, to reflect the a priori fuzzy
information of “smoothness”.

Our earlier work [38] presented the idea of constructing
the target trajectory FoT by fitting the discrete-time estimates
yielded by an off-the-shelf estimator such as a Markov-Bayes
filter or an O2/C4F estimator. In the latter the sensor data
have to be converted to the state space which requires the
observation model to be injective or multiple sensors available.
In this paper, we ease this requirement and carry out fitting
directly on the time-series observations rather than their con-
version to the state space. The present approach is applicable
to any observation model and does not make Markov-transition
assumption. This is an essential difference of our work to the
state of the art and our previous work.

III. SPATIO-TEMPORAL TRAJECTORY MODEL

In this paper, we limit our discussion to the state variables
that can be observed directly, e.g., the target position, rather
than all variables of interest such as position, velocity and
acceleration. To clarify this, an important definition is made
on the concept of “directly-observed state”.

Definition 1 Directly-observed state The “directly-observed
state” is referred to the variables of the state that are determin-
istic function of the observation. For example, for the range
and bearing observation, the directly-observed state is the
target position while for the Doppler observation, the directly-
observed state is the radial velocity.

We note that some unobserved variables of interest may be
inferred from the directly-observed variables based on the laws
of physics, e.g., the differentiation of position and velocity
over time is velocity and acceleration, respectively.

A. General framework

Instead of (@), we propose using the trajectory FoT (3 to
model the target motion. Our goal is to find a engineering-
friendly F'(t) for approximating f(¢) which best fits the sensor
data as in (4) and then use it to estimate the state for a desired
time. To avoid the computationally intractable hyper-surface
fitting, we perform fitting with respect to each dimension of the
“directly-observed state”, by assuming conditional indepen-
dence among the dimensions. This is computationally efficient
since neither integration nor differentiation in one dimension
will affect the others in the orthogonal coordinates.

Any continuous trajectory can be approximated by a polyno-
mial of a certain degree to an arbitrary accuracy [3]], [30]. This
accuracy can be easily analyzed by the Taylor series expansion
as in Appendix A. Based on this, linear parameter dependence
can be assumed, i.e.,

F(t) = Cl(bl (t) + C2¢2(t) +ooe Cm¢m(t)7 )

where {¢;(t)} are a priori selected sets of functions, for ex-
ample, monomials {t'~'} or trigonometric functions {sinit},
and C := {¢;},i = 1,2,,m are parameters to be determined.
We call m the order of the fitting function, which controls the
number of free parameters in the model and thereby governs
the model complexity.
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Hereafter, we denote the parameterized FoT F(t) in a
specified form F'(t; C), where C}, denotes the parameter set
at the time k. It is crucial to determine the order m of the
polynomial properly. For the typical CV and CA models, we
have the following constraint, respectively,

2
Lf(g;(t) = Constant, 78 J(;(:Q/;(t)
which indicates that the suitable fitting function order for the
CV and CA motions are m = 2 and m = 3, respectively.

In our approach, we advocate sliding time-window fitting (to
be detailed in Section [[V-A)), by which any trajectory function
can be divided into a number of consecutive time intervals,
each of which corresponds to one function of relatively lower
order. This allows us trade-off fitting fidelity to the real
trajectory FoT with computational complexity. For example,
a two dimensional polynomial with m = 2 given as follows
applies to most smooth trajectories in the planar space

= Constant, (8)

1
x(t) ar1 Qg2 (k3
F(t,Cy) : = ' ' ' t 9
(t C) [ y(t) } [ bri br2 brgs 2 » O

where Ck = {a;m, bkﬂ'}i:l,g’g.

While the above formulation is suitable to fit straight lines
or smooth curves, the trigonometric function is particularly
useful for circular trajectories, e.g., an elliptic trajectory in
the planar Cartesian space can be represented as

2 2
ay,o (z(t) — a?m) + b%,z(y(ﬂ - b;e,l) =1,
for which Cy, := {a} ;, b} ;},i=1,2.

The elliptic curve can also be given by a parametric form
with the = and y coordinates having different scalings

x(t) = ak1 + a gsin(t)

F(t;Cy) : ’ ’ ,
CLORE (b e
and correspondingly Cy, := {ag,;, bk}, i =1,2.

(10)

(11

B. FoT Parameter Estimation and Optimization

To get the desired FoT F(t;Cy), the parameters C} can
be determined by minimizing the fitting residual | F'(¢; Cy) —
fx(t) || in the underlying time window [k1, k2]. However, these
residuals are not explicitly available since the true trajectory
FoT fi(t) is unknown and is exactly what we want to estimate.
As such, we turn to selecting the function that best fits the
sensor data series as in () in which the fitting residual
is defined by the discrepancy between the original sensor
data and the pseudo observation made on the FoT of the
corresponding time, namely,

Ry(Cy) =l yt — he(F(t; Cr), V) || - (12)

Typically, the distance || - || can be given as the un-weighted
¢y-norm of the error (square error), namely R:(Cj)|s, =]
yi — hi(F(t;Cr),v;) ||?. This is referred to as the least
squares (LS) fitting for which the Gauss-Newton method [[19]
is popular. The resulting ﬁ(t; C%) is known as the ordinary
LS fitting to the given data which implicitly assumes that the
sensor data received at different time instants provide equally
accurate information.

Further on, one can assign weight w; to each time instant to
account for time-varying data uncertainty, e.g., being inversely
proportional to the covariance of y;, leading to

Ri(Ci)le, =10y || ye — he(F(£:Cr),ve) |7, (13)

where W; = wt(Zfikl U}t)_l is the normalized weight
regarding all data in the time window. Moreover, a fading
factor can also be considered in the weight design, such as
wy ;= At where 0 < A < 1, in order to emphasize the
newest data by assigning lower weights to history data.

We denote by &4 (Cy) = Zfikl R:(C}) the sum of the
residuals in the time window [k, ko). Then, the fitting problem
is reduced to parameter estimation of C, namely,

argmin®;, (Cy,),
Ck

(14)

where the sensor data y; may arrive at irregular time intervals
and suffer from missed detection and outlier/false alarms.

C. Analytic Solution and Numerical Approximation

In general, the (necessary) condition for ®,(Cy) to be a
minimum is that the following m gradient equations are zero,
namely,

0P (C
£(Cr) —0,Yi=1,..m. (15)

aCi
In a linear system (and for continuously increasing time
window, namely k; = 0), it can be exactly solved given

sufficient sensor data, e.g., by a recursive LS algorithm [39,
pp-138], [[1, Chapter 10], [2, Chapter 30] as briefly shown in
Appendix B. Particularly, when equality constraints exist, they
can be easily incorporated into the minimization function by
methods such as Lagrange multipliers [40].

However, in a nonlinear system, the derivatives are functions
of both the independent variable and the parameters, which
make these gradient equations do not have a closed solution.
Instead, we have to resort to numerical approximation methods
such as the trust-region-reflective (TRR) algorithm [41]], [42]
and the Levenberg-Marquardt algorithm (LMA) [[43]]. In partic-
ular, constraints on parameters, e.g. bounded parameters, can
be easily integrated in TRR [42]], as in (3). These algorithms
have been implemented in popular software and compute
efficiently, offering great convenience for engineering use.
However, we must note that almost all fitting algorithms
including TRR and LMA work from an initial guess of the
parameters for iterative searching and do not guarantee finding
the global minimum. That is, the parameters are obtained by
successive approximation till the residuals ®; do not decrease
significantly in iterations or become lower than a threshold.

To speed up the iteration, we set the parameters C_1
yielded at time k£ — 1 as the initial parameters for estimating
C}, at time k. This is feasible because the trajectory functions
yielded by the data in time window [k1, ko] and that in time
window [k + 1, ks + 1] will be similar due to the common
data in [k + 1, ko). In this setting, the result is a recursive
algorithm for which the recursion can be described as

Cr = Up(Ch_1). (16)
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It is worth noting that the parameter transition in (I6) due
to data updating in the sliding fixed-length time window is
not a parameter convergence process as in the recursive LS
estimation due to new data adding to the continuous increasing
time window therein. It is also not necessarily a Markov-jump
process as the parameters at time k£ depends not only on that
at time k — 1 but also that of earlier times, if the fitting interval
is longer than unity.

To ameliorate the computational complexity due to nonlin-
ear fitting, an alternative method is to project the sensor data
into the state space as is done by the O2 approach [4]-[6].
Then, the problem reduces to performing linear fitting on the
intermediate O2 estimates 3., for which the fitting residual
is given by R:(Ck) :=|| if’z — F(t;Cy) |- This however
requires the observation function being injective or multiple
sensors being used which does not apply to the sensor setup
such as a bearing-only sensor.

IV. TRAJECTORY FOT BASED STF

Given an FoT estimate F(t;Cy), the state at any time ¢
(that does not have to be an integer) in the effective fitting
time window (EFTW) [K7, K] can be estimated as follows

%y = F(t;Cy),Vt € [K1, Ko, (17)

where EFTW [K7, K] at least covers the sampling time win-
dow [ky, ko], namely Ky < kq, ke < K. More specifically,
the inference is referred to as extrapolation when K7 <t < ky
or ko < t < K, and as interpolation when k1 < t < ko.
Different choices of time ¢ € [Kj, K>] with regard to the
right bound of the time window ks, are immediately apparent
and correspond to different fitting terminologies as follows:

o Delayed fitting: ¢ < ko, the state to infer is for an
earlier time. Particularly, we notice that fitting at the
middle of the time window, namely ¢ = (ki + k2)/2,
is comparably more accurate. This is also referred to as
fixed-lag smoothing as the estimation bears a fixed time-
delay of ky —t.

o Online fitting: ¢t = ko, the state to infer/filter is exactly
for the time when the latest sensor data arrive.

o Forecasting: t > ko, the state to infer is for the future
time. Particularly, denoting n := (¢t — ks), it is called
n-step forecasting.

In addition, any estimates given above can be further fitted
over a time window, forward and backward in time series, as
many times as desired, to repeatedly revise the fitting function
for more accurate trajectory estimation. This type of batch/off-
line fitting is referred to as Smoothed Fitting hereafter. This
is preferable for off-line data analysis but caution should be
exercised to avoid over-fit. We take once-forward and once-
backward delayed fitting as the default smoothed fitting, which
resembles the conventional fixed-interval smoothing. It can be
written as

k2
argcmin Z | #P°F — F(t;Cy) |, (18)

ko t=ky
where {#PF}, ¢t = ko, ko — 1, -+ |k are the estimates yielded
by the Delayed Fitting and the fitting time-window [k1, ko]
moves in reverse order by time (namely, backward).

Finally, we emphasize two important points about fitting,
which are particularly beneficial for our approach.

A. Piecewise/Sliding Time-window Fitting

Numerical fitting over a long data series suffers from
instability, especially when the trajectory is subject to different
models at different time periods. In such a situation, piecewise
fitting, also referred to as spline fitting or segmented fitting,
is a useful alternative. The advantage of piecewise fitting is
that at each time instant, the complexity of the fitting function
can be controlled (of lower order), which will not be affected
by the data outside the time window. At the core of piecewise
fitting is to detect the model change from the sensor data in
time series, where the change point is the desired boundary
between segments. This is formally known as change-point
detection in general [39] or maneuver detection in the context
of target tracking [30], [44], [45]. There are a large body of
algorithms and softwares; see e.g., [39], [46].

However, we want to indicate that most change detection
mechanisms, including our own previous attempt [38], are
problem-dependent and suffer from detection delay. In this
paper, sliding time-window fitting (which is a special type of
piecewise fitting) is advocated. With a sliding time-window
fitting, the time-window [k1, k2] is supposed to move forward
with time k. The length of the time window can be adapted
to accommodate high varying target dynamics, in accordance
to the order of the fitting function and the feasible computing
time that has to be smaller than the sampling interval. For
the target we consider here such as passenger aircraft/ships
and satellites, even a maneuver occurs, the target trajectory
may remain smooth. In this case, maneuver detection becomes
unnecessary as the fitting can be carried out the same when the
target maneuvers smoothly, i.e., the trajectory remains smooth
as demonstrated in our simulations in Sections [VI-Aland [VI-Bl
We have particularly addressed this issue in [45]]. It is one of
the advantages yielded by formulating the target motion as a
FoT rather than by a Markov transition model.

B. Missed detection and irregular sensor data

Fundamentally different from the Markov-based estimator
that needs to assume independence among time series states,
time-window fitting eases such assumptions and does not
require the data to be uniformly observed over time or
to be chronological. Because of this, neither missed detec-
tion/delayed data, nor irregular sensor revisit frequency will
inhibit our approach so much as it does to a Markov-Bayes
estimator.

In fact, both missed detection and delayed observation can
be viewed as a special case of the problem of sensor data
arriving at irregular time intervals, which do not constitute
any challenge to fitting as long as the sensor data and its
corresponding time are correctly matched. This greatly adds
to the flexibility and reliability of our approach. Next, we will
review work on trajectory estimation, some of which are based
on fitting, and exhibit advantages for coping with the missed
detection and irregular sensor data.
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V. RELATED WORK

Target trajectory estimation and analysis do not only allow
recording the history of past locations and predicting the future
but also provide a means to specify behavioral patterns or
relationships between locations observed in time series and to
guide target detection in future frames [47], to name a few.
Most existing works however are based on either deterministic
or stochastic HMM assumption of the target motion and need
statistical property of the observation, which forms the key
difference to our approach. In addition, no explicit attempts
explicitly unify the tasks of smoothing, filtering, tracking and
forecasting, fully based on data fitting/learning.

A. Discrete-time trajectory estimation

Instead of estimating point-states at each time instant when
a new observation is received, there are some studies that
recursively estimate the discrete time-series state set [25], [48]],
[49] based on a sequence of observations. Compared to the
recursive point-state estimation, this, as generally termed data
assimilation when formulated as an optimization problem, re-
quires much higher computation. For linear systems, discrete-
time trajectory estimation has direct connection to Gauss’
LS estimate [50] and Kolmogorov-Wiener’s interpolation and
extrapolation of a sequence [51]]. Data assimilation refers to
finding trajectories of a prescribed dynamical model such that
the output of the model follows a given time series of observa-
tions [[52[|-[|56]. The key point is to search for the maximum of
the posterior density function by assuming certain (e.g., Gaus-
sian) observation noise, model initial conditions and model
errors, and iteratively minimizing a cost function which is the
negative of the logarithm of the posterior density function. Of
high relevance, an expectation maximization (EM) approach
is proposed [57] in conjunction with conventional Kalman
smoothers for smoothing and forecasting, yielding a recursive
procedure for estimating the parameters by MLE, which can
deal with missing observations.

Differently to the stochastic modeling of the state process,
Judd etc. presented a series of non-sequential/optimization-
based estimation and forecasting works, particularly in the
area of chaotic systems, e.g., [21-[25]], which remove the
use of the state transition noise. Actually, similar deterministic
Markov models have been applied in noise reduction methods
[58], moving horizon estimator [59] and Gauss-Newton filter
[19], [20]. Interestingly, Judd’s shadowing filter yields more
reliable and even more accurate performance than the Bayesian
filters - however, a fairer comparison should be made between
shadowing filters with Bayesian smoothers, using the same
amount of observation data - in the case when the nonlinearity
is significant, but the noise is largely observational [[11f], or
when the objects do not typically display any significant ran-
dom motions at the length and the time scales of interest [24].
The Gauss-Newton filter that models the state transition by a
deterministic differential equation, namely (Zb) without noise
uy, is Cramér-Rao consistent (providing minimum variance)
[19]. Despite their Markov assumptions, these approaches,
similar to our fitting approach, are based on optimization
formulation, which is advantageous in handling constraints (as

shown in (33) in Section [VI,C) and is less sensitive to process
disturbances, missing data and observation singularities than
a recursive Bayesian filter.

B. Continuous-time trajectory estimation

More relevantly to our approach, efforts have been devoted
to continuous time trajectory estimation via data fitting in dif-
ferent disciplines. De facto, signal processing stems from the
interpolation and extrapolation of a sequence of observations
[51]]. Data fitting is a self-contained mathematical problem and
a prosperous research theme by its own, which has proven
to be a powerful and universal method for pattern learning
and time series data prediction, especially when adequate
analytical solutions may not exist. Moreover, the recursive LS
algorithm reformulated in state-space form was recognized a
special case of the Kalman filter (KF) [60], [61].

However, most existing works work in batch manners based
on either MLE [62] or Bayesian inference [|63], [|64]] or as an
extra scheme to a recursive filtering algorithm [65]-[67]. In
[62], directional bearing data from one or multiple sensors
are investigated, where Cardinal splines (i.e., splines with
equally spaced knots) of different dimensions are fit to the
data in the MLE manner; this is one of the earliest and few
attempts that assume a spatio-temporal trajectory for tracking.
In [63]], the trajectory is approximated by a cubic spline with
an unknown number of knots in 2D state plane, and the
function estimate is determined from positional measurements
which are assumed to be received in batches at irregular time
intervals. For the data drawn from an exponential family, the
spline knot con-figurations (number and locations) are changed
by reversible-jump Markov chain Monte Carlo [[64]. Much
more complicated, artificial neural networks were considered
as a parametric non-linear model in [|68]], which is unaffordable
in computation for online estimation.

Continuous time trajectory estimation has also received
attention in the context of mobile robot simultaneous local-
ization and mapping (SLAM) [69], [[70] and visual tracking
[71], [72]). In the former, the robot motion is usually under
the user’s control (called proprioceptive sensor data) and the
continuous-time trajectory representation makes it easy to
deal with asynchronous measurements and constraints. In the
latter, starting and/or ending points may be specified for the
trajectory. The tracking problem is treated as the discrete-
continuous optimization with label costs [72], where the key
is generating all the trajectory hypotheses having a reasonable
low label cost based on a variety of DA rules, for which
the design of the label cost takes the critical issues such as
the targets’ dynamics, occlusions and collisions into account.
However, only linear fitting is involved.

Parametric curve fitting methods have the difficulty to define
knots. Comparably, Gaussian process (GP) provides a non-
parametric tool for learning regression functions from data,
having the advantage of providing uncertainty estimates [73]
under linear state process function. Furthermore, regression
based on a support vector regression model and a GP model
respectively was advocated to predict ballistic coefficients of
high-speed vehicles and also the long-term future state [[74].
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Relevantly, the Gaussian smoothing [75]] allows for inferring
the state at any time of interest using the interpolation scheme
that is inherent to GP regression. Multi-step ahead prediction
in time series analysis is treated using the non-parametric GP
model [76]] in the manner of making repeated one-step ahead
predictions. There methods are all based on data training and
again, stepwise state transition.

In summary, our FoT fitting approach differs from the above
various data fitting approaches (not only for target tracking)
in four major aspects:

o The assumed trajectory function is purely a function of
continuous time (namely spatio-temporal, “x = f(t)”),
rather than a spatial function defined in the state space in
a manner like “y = f(x)”;

e We perform continuous time fitting in each state-
dimension independently;

o« We use a sliding time window rather than pre-defined,
ad-hoc knots for fitting flexibility; and

o Our approach accommodates complete absence of statis-

tical information about the target and the sensor.

Moreover, we reiterate two critical, original strategies for
efficiently real time implementation of our approach

o As indicated by (8)), usual description of the target motion
can be utilized for fitting function design; and

o Thanks to the use of (T6) in nonlinear fitting initialization,
our approach can be carried out online.

VI. SIMULATION

Although the proposed FoT formulation of the target motion
is fundamentally different from HMM, it is interesting to
compare the FoT-based STF approach with the state-of-the-
art Markov-Bayes solutions. For this, this section will study
a variety of representative scenarios. In all cases, our fitting
approach does not need to make any statistical assumption on
the target dynamics, background or sensor noise while ideal
statistical information is provided to the Markov-Bayes filters,
smoothers and forecasters except otherwise stated for their
most favorable performance.

For the sake of generality and reproduction of the results, the
first two simulations are taken from an excellent Matlab tool-
box due to Hartikainen, Solin, and Sérkki [77]]: one uses linear
and non-deterministic target dynamics and linear observation
model, while the other utilizes deterministic target dynamics
and nonlinear observation model. This toolbox features a
large body of popular filters and smooths for discrete-time
state space models, including the KF, extended KF (EKF)
and unscented KF (UKF) and their corresponding smoothers
implemented on the basis of the rauch-tung-striebel (RTS)
algorithm. In addition, the interacting multiple model (IMM)
approach, as well as its non-linear extensions based on the
mentioned filters and RTS smoothers, has also been simulated.
In contrast, the third simulation is described in a continuous-
time system for tracking a non-maneuvering ballistic target in
which a particle filter (PF) is compared.

The Matlab codes used for the simulation are available at:
https://sites.google.com/site/tianchengli85/matlab-codes/fot4stf

A. Linear observation maneuvering target tracking

This simulation example is the same as that described in
Section 4.1.4 of [77], where the motion of a maneuvering
object switches between WPV (Wiener process velocity) with
low process noise, such as a power spectral density 0.1, and
WPA (Wiener process acceleration) with high process noise,
such as a power spectral density 1. The system is simulated
with 200 sampling steps (with the sensor revisit interval A =
0.1s). The real target motion model was manually set to WPV
during steps 1-50, 71-120 and 151-200 and to WPA during
steps 51-70, and 121-150. This leads to four maneuvers.

The initial state of the target is xo = [0,0,0,—1,0,0]7,
which means that the object starts to move from the origin
with velocity —1 along the y-axis. All filters and smoothers are
correctly initialized with the true origin x( and the covariance
diag([0.1,0.1,0.1,0.1,0.5,0.5]7). In addition, for the best
possible performance of the IMM approach, correct knowledge
about the two models is assumed (except the maneuvering
time). The prior model probabilities are set to [0.9,0.1]7 and
the model transition probability matrix for IMM is set to
0.98 0.02 }

(19)

Trom = [ 0.02 0.98

Observation y}, is made on the target position [py k, py.x]T
with Gaussian noise Vi, Yk = [Pz .k, Py.k]” + Vi Where

0.1 0
:| 6kj7

0 0.1
where dy; is the Kronecker-delta function which equal to one
if £ = j and to zero otherwise.

For this unbiased linear measurement model, the unbiased
02 position estimates can be directly given by measurement
[pg?kvpgfk]T =Yk

The proposed trajectory FoT fitting is carried out in the x-
axis and y-axis individually in the LS manner, with a sliding
time window of 10 sampling steps (except the starting stage
when little data are available). The polynomial trajectory FoT
of order m = 2 is assumed as follows

(20)

J

E[vi] = 0,E[vyv]] = {

Dot = 01 + a2t
’ , 21
{ Dy,t = by + bat @h
and the optimization goal is given as
. 2
p(ar,az2) = Zfikl (9% — (a1 + azt)g 22)
k 9
D (br,ba) == D2y, (P97 — (b + bat))

where ks is the current time, k1 = max(1, ko — 10).

Given a time series of O2 estimates [p9%,p)3]" for the
time window k € [kq, ko], the trajectory FoT parameter can
be exactly determined by @), ie.,

k

Zi'ikl (a1 +ast —p23) =0

Zi;ikl (alt + agt? — pg?tt) =0
02) _

fcikl (bl + bzt *p‘%t) =0
Sty (bat + bt — pQ%it) =0
Once a1, ag, by, by are obtained, the position of the target at
time ¢ can be inferred as [Py ¢, Pu i)’ = [a1 + aot, by + bat]T
straightforwardly. As addressed, four forms of fitting-inference

(23)
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Fig. 2. RMSE of different linear estimators over sampling steps

can be implemented based on the same fitting function:
delayed fitting (¢ = k2 — 5A which estimates the state with
0.5s delay), online fitting (! = ko which estimates the state
using the latest 10 sensor data), forecasting (¢ = ko + H5A
which estimates the state of the future, 0.5s in advance),
and smoothed fitting (which is given by carrying out the
delayed fitting forward in time series and then backward). Very

different from IMM approach, our approach needs neither any
multiple-model design for dealing with the target maneuver
nor any a priori knowledge of the initial target state for
estimator initialization. This, at the starting point, reveals the
robustness advantage of fitting.

The simulation is performed with 100 Monte Carlo runs,
each run having a randomly generated trajectory originating
from the same initial point, and a corresponding independently
generated observation-series. The real trajectory and the esti-
mates given by different filters, smoothers and forecasters in
one run are given in Fig.1. The IMM-based 5-step forecasting
is given by iteratively carrying out the prediction of the IMM
approach 5 times without observation updating. As shown
in Fig.1, all estimators correctly capture the trend of the
trajectory. For more insights, their root MSEs (RMSEs) on
the position estimation over time are given in Fig.2, where
RMSE is calculated over 100 Monte Carlo runs. The mean
of all RMSE over the 200 sampling steps and the average
running time per run are given in Table [I]

« On the estimation accuracy, the online fitting outperforms
the KF based on the MPV model but underperforms the
IMM and the KF using the MPA model. The smoothed
fitting improves over the delayed fitting, both outperform-
ing the KS (Kalman smoother) using WPV but losing to
the KF using MPA and the IMM smoother. For 5-step
ahead forecasting, our fitting approach outperforms the
IMM approach.

¢ On the computing speed, the online fitting is slower than
the filters, while the delayed fitting is slightly slower than
the KSs using only one model, but is faster than the IMM
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smoother. The smoothed fitting is the slowest overall.
However, the forecasting fitting is both faster and more
accurate than the IMM forecaster. We must note here that
all fitting approaches share the same fitting function, and
their respective computing times have taken into account
the common part for obtaining that fitting function (which
is the majority of the computation required overall).
Therefore, their joint computing time, if STF are required
jointly, is much less than the sum of their respective times
shown here.

Although the estimation accuracy is slightly inferior to some
of the suboptimal filters and smoothers that are based on ideal
models and parameters, our fitting approaches work under the
harsh condition that (i) they need neither a priori information
about the target motion models nor the sensor observation
noise statistics, but (ii) they provide powerful continuous-time
estimates (yet we only compare the estimation at discrete
time instants), including better prediction than that of model-
based estimators. More importantly, (iii) the proposed fitting
approach obviates the need to design multiple/adaptive models
due to target maneuver. However, when these filters and
smoothers are not initialized perfectly with the true state and
even with the ideal error covariance, and/or if the multiple-
model approach is not designed properly, their performance
will undoubtedly degrade. In contrast, the fitting scheme based
on minimum unrealistic assumptions will not suffer from these
problems. These are just the advantage of modeling the target
dynamics by a trajectory FoT rather than by a HMM.

Next, we will investigate two nonlinear systems, in which
the estimators may be provided with incorrect sensor noise
information or poorly initialized.

TABLE 1
AVERAGE PERFORMANCE OF DIFFERENT LINEAR ESTIMATORS

Estimators Aver. RMSE Compt. Time (s)
KF (using WPV) 0.4498 0.0252
KS (using WPV) 0.2308 0.0472
KF (using WPA) 0.2520 0.0251
KS (using WPA) 0.1184 0.0496
IMM 0.2116 0.2864
IMM smoother 0.1025 1.0875
IMM 5-step forecaster 0.4373 0.9896
Online Fitting 0.2654 0.7120
Delayed Fitting 0.1442 0.7434
Smoothed Fitting 0.1348 1.4686
Fitting-based 5-step Forecasting 0.5586 0.7210

B. Nonlinear observation maneuvering target tracking

This simulation is set the same as that given in in Section
4.2.2 of [77]. To simulate the deterministic target motion (as
shown in Fig.1), two Markov models using insignificant noises
are assumed with sampling step size A = 0.1s. The first is
given by a single linear WPV model with insignificant process
noise (zero-mean and power spectral density 0.01), based on
which the standard EKF, UKF and their corresponding RTS
smoothers (EKS and UKS respectively) are realized. The other
is given by a combination of this WPV model with a nonlinear
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Fig. 3. RMSE of different nonlinear estimators over sampling steps when
full and correct model information is provided to all estimators

CT model (no position and velocity noise but zero-mean turn
rate noise with covariance 0.15). In the latter, multi-model
design and nonlinear estimation approaches are required for
which the EKF/EKS-IMM and UKF/UKS-IMM approaches
are employed for filtering/smoothing. The IMM uses a model
transition probability matrix as follows

(24)

0.9 0.1
Tram = [ ] )

0.1 09

with the prior model probabilities given by [0.9,0.1]7.

The measurement is made on the noisy bearing of the object,
which is given by four sensors located at [s;1,8,1]7 =
[—O.5,3.5]T, [Sw,g,SyQ]T = [—0.5, —3.5]T, [$x7378y73}T =
[7,—3.5]7 and [sy4,sy44]7 = [7,3.5]T, respectively. The
noisy bearing observation of sensor 7 = 1,2, 3,4 is given as

Pyt — Sy,i
P,k — Sx,i

(25)

Ok, = arctan( ) + Vg i,

where v, ; ~ N (0,%,) and we will use ¥, = 0.01 and X, =
0.0025 separately.

Different from the previous example, at least two bearing
sensors are needed to cooperate in order to project the bearing
observations into the position space for O2 inference [5]]. The
nonlinear projection will lead to a bias if the bearing noise is
not properly taken into account. For this reason, we perform
the LS fitting directly on the bearing data with regard to the
four sensors jointly, rather than on its projection in the position
space. This releases the need of explicit statistical knowledge
of the sensor observation noise. A sliding time window of 10
sampling steps (of length of totally 1s) and a polynomial fitting
fucntion of order m = 2 were utilized. The fitting function is
assumed as the same as (2I)). Given that the four sensors are of
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the same quality (while we do not really need to know vy ;),
the joint optimization function is given as

by + bot — 5 ?
1 2 Y,
argmin 015 — arctan( >> (26)
a1,az,b1,b2 tzk: ; < ' ap +asgt — g ,
where ko is the current time.

Different to our previous simulation using simple linear
measurement model that can be easily solved analytically, the
above nonlinear formula is optimized by the LS curve fitting

function: LSQCURVEFIT provided with the Optimization
Toolbox of the Matlab software. All traditional estimators are
initialized favorably with the true state xg = [0,0,1,0,0]” and
covariance diag([10.1,10.1,1.1,1.1,1]7) and have the correct
information about the sensor noise statistics. We initialize
position estimates in our fitting approach at the first two
sampling instants as [0, 0] and [1,0]7, respectively. Then, the
fitting (for smoothing, filtering and forecasting, respectively) is
performed from the third sampling instant. This can be viewed
as a hot-start fitting as the information about the initial state
Xg excluding covariance is used (while the fitting that uses no
a priori information, as is done in the last simulation, is called
cold-start).

We first set 3, = 0.01. The simulation is performed with
100 Monte Carlo runs, each run consisting of 200 sampling
steps (lasting 20 seconds) and using the same, deterministic
trajectory but randomly generated observation series. The
average performance of different estimators over 200 sampling
steps is given in Fig.3. The RMSE over 200 sampling steps
and the average running time per run are given in Table

Regarding the estimation accuracy, the online fitting out-
performs both the EKF and UKF using a single MPV model
but slightly underperforms the EKF/UKF IMM. The smoothed
fitting improves the delayed fitting while the latter is equiv-
alent to EKS and UKS, all inferior to the EKF/UKF IMM
smoothers. For 5-step ahead forecasting, our fitting approach
outperforms the IMM approach. However, the computing
speed of our fitting approaches is the fastest among all
categories (whether for filtering, smoothing or forecasting)
and is remarkably faster by using the LSQCURFIT tool as
compared with the polynomial fitting used in the previous
example. This is primarily because in our realization here, the
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coefficient parameters obtained in the last fitting process will
be used as the initial parameters in the next fitting process, as
in (T6). This significantly reduces the optimization routine for
solving (26) and can be applied in most situations.

Next, we change the simulation setup by reducing the real
noise for all bearing sensor observation to 3, = 0.0025 in
(25) without informing any estimators. All filters, smoothers
and forecaster and the unbiased O2 inference still use the same
information of >, = 0.01. The biased O2 inference and our
fitting approaches that never use this information will not be
affected. This situation corresponds to the realistic case that
the user does not have correct information about the sensors’
noise statistics. In this case, the performance for one run and
the average performance over 100 runs for different estimators
are given in Figs. 4 and 5, respectively. The RMSE and the
average computing time per run are given in Table The
results show that our fitting approaches benefit the most from
the increased sensor accuracy. On the estimation RMSE, the
online fitting outperforms the EKF/UKF and the EKF/UKF-
IMM approaches. The smoothed and delayed fittings achieve
the best performance on average, especially at the time periods
when target maneuver occurs, such as ¢ = 6 — 8s and
t = 13 — 15s demonstrating better performance than the IMM
approach that admits maneuver detection delay. It is interesting
to note that there is a crossover of the performance of the
delayed and the smoothed fitting, which slightly outperform
each other at different model stages. As addressed, the latter
may suffer somehow from overfit and therefore does not
always perform better than the former. A further analysis about
the overfit problem remains open. On the computing speed, our
fitting approaches yield the fastest computing speed overall,
demonstrating good real time running potentiality.

The second simulation setup, in which complete and correct
sensor noise information is unavailable, conforms more to real-
ity than the first simulation setup where the model information,
which is complete and correct, is simply too ideal. In the
next example, we will demonstrate that even when perfectly
modeled and parameterized, the suboptimal filters that are not
so ideally initialized can perform worse than the data driven
solutions that make little or no state model assumption.

TABLE I
AVERAGE PERFORMANCE OF DIFFERENT NONLINEAR ESTIMATORS (WHEN
COMPLETELY CORRECT SENSOR NOISE KNOWLEDGE IS USED)

Estimators Aver. RMSE Compt. Time (s)
EKF (using WPV) 0.3263 0.0288
EKS (using WPV) 0.1652 0.0494
UKF (using WPV) 0.3270 0.0900
UKS (using WPV) 0.1649 0.1108
EKF-IMM 0.2985 0.1749
EKF-IMM smoother 0.1302 1.2694
UKF-IMM 0.2728 0.9816
UKF-IMM smoother 0.1316 2.7550
UKF-IMM 5-step forecaster 0.4845 2.9821
Online Fitting 0.3029 0.0267
Delayed Fitting 0.1631 0.0446
Smoothed Fitting 0.1500 0.2623
Fitting-based 5-step forecaster 0.6200 0.0190

TABLE III
AVERAGE PERFORMANCE OF DIFFERENT NONLINEAR ESTIMATORS (WHEN
INCORRECT SENSOR NOISE KNOWLEDGE IS USED)

Estimators Aver. RMSE Compt. Time (s)
EKF (using WPV) 0.2716 0.0404
EKS (using WPV) 0.1341 0.0587
UKF (using WPV) 0.2725 0.1557
UKS (using WPV) 0.1338 0.1736

EKF-IMM 0.2247 0.3078

EKF-IMM smoother 0.0883 1.2402
UKF-IMM 0.1965 0.9463
UKF-IMM smoother 0.0939 2.4897
UKF-IMM forecaster 0.3894 2.6716
Online Fitting 0.1599 0.0248
Delayed Fitting 0.0875 0.0430
Smoothed Fitting 0.0867 0.3004
Fitting-based 5-step forecaster 0.3937 0.0148
Falling body
Range

Radar M

Altitude

Fig. 6. Geometry of the vertically falling target

C. Ballistic target tracking

In this example, the target is vertically falling, which is
studied for testing nonlinear filters, such as [[78]] and [79]. The
geometry of the scenario can be illustrated in Fig.6 with two
known parameters: the horizontal distance of the radar to the
target M = 10° ft and the altitude of the radar H = 10 ft.

The target state is modeled as z; = [hy, s¢,c;]? consisting
of altitude h;, velocity s; and ballistic coefficient ¢;. While
only the altitude is the directly-observed state, we will also
show how to infer the velocity and ballistic coefficient via
fitting. The continuous-time nonlinear dynamics of the target
is governed by the following differential equations

iLt = — S84, (27)
5y = —e MMs2ey, (28)
& =0, (29)

where v =5 x 1075,
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The discrete-time range observation is made every second
and is given by

yr =/ M? + (hy — H)? + vy,

where the the observation noise is Gaussian vy ~ N (0, R).

To simulate the ground truth, the initial state of the target is
set as xo = [3x 10°ft, 2x 10*ft/s, 10(—3)ft~*]”" In accordance
with [21] for high-precise approximation of the differential
equations, a fourth order Runge-Kutta method based on 64
iterations every second between two successive observations
is employed for simulating the deterministic ground truth. The
fourth order Runge-Kutta method is also used in the estimators
for accurate simulation of the state motion.

In this example, the online fitting to compare with the 02
inferences and three typical nonlinear filters including EKF
[79], UKF [78] and PF. To initialize them for tracking, a
priori information of the initial state of the target is given
as xo = [3 x 10°ft,2 x 10*ft/s, 3 x 100 — 3)ft~']” with error
covariance Py = [106ft,4 x 106ft/s, 100 — 4)ft~']”. This is
the same as that in [78]], [79]]. That is, a priori knowledge
about the target altitude and velocity is ideally consistent
with the truth but knowledge regarding the ballistic coefficient
is bad. In particular, the Gaussian observation noise is of
relatively small variance, which will yield a steep Gaussian
likelihood function. As a result, the standard sampling im-
portance resampling (SIR) PF will suffer from the sample
degeneracy/impoverishment significantly [80] . To combat this,
we use a likelihood function with heavy tails as follows

(30)

(g — u)?

; ) (€29)
max{ (g, - y$>>2}>

plyelh) o eXp< -

where y,(;) = \/M2 + (h,(;) — H)? and h,(;) is the estimated
altitude of the ¢th particle of the total 200.

Given the latent constraint that: the target is falling vertically
and will not make any movement in the horizontal direction,
the O2 inference estimates the altitude h; based on the
triangulation between hy, M and yj as follows:

hy, = +/ —\/y? — M2 + H, (32)

where the sign will change from positive to negative (only
once) at an altitude about h; ~ H during the entire tracking
process.

More specifically, the sign can be determined based on
the elevation angle of the radar in practice (if available) or
based on another latent rule that: the ball is falling in a
single direction and with a velocity that accelerates with time.
That is, we have the contextual information of “accelerated
falling” which forms a constraint on the altitude and velocity

as follows: R R
{ i < P (33)
Sp—1 < Sk
When the statistics of the sensor observation noise is known,
de-biasing shall be applied for which we applied the Monte
Carlo de-biasing approach [4], [S] using 100 samples. This
is referred to unbiased O2 inference while that given by
without debiasing is referred to as biased O2 inference.

As addressed earlier, we can assume a reasonable trajectory
function on both altitude and velocity to carry out fitting for
estimation. Here, the directly-observed state is the altitude and
its fitting estimation shall rely only on the observation, while
for velocity, the deterministic dynamic model (27)-(29) can
be used. For both altitude and velocity, we use a sliding time
window of no more than 5 sampling steps (as we found that
both trajectories are very smooth) and 3-order fitting function.
That is, the altitude function is given as

hy = a1 + ast + a3t2, (34)
and the corresponding object minimizing function
ko
argmin Z (y;c —\/M2 + (a1 + ast + a3t2)2)2. (35)

a1,a2,83 4 _ 1

Once the altitude trajectory function (34) is obtained, its
derivation gives that

hy = as + 2ast, (36)
Similarly, the velocity function can be assumed
Sy = by + byt + bst?, (37)
and consequently, we have its derivation
5¢ = ba + 2bst. (38)

The velocity function should be determined such that the
discrepancies between both sides of (Z7) and (Z8) are mini-
mized. By comparing with and with (28], these

two discrepancies can be written as, respectively
(1)1 = ht — (—St),

@2 = ét — (—e_vhtsfét),

(39)
(40)

where ¢; is calculated using the data from the previous
sampling time instant, based on (29), as follows

A St—1
Ct 1=

767—%#15?_1' 41
We are able to do so because the ballistic coefficient is a
constant (such is known a priori). However, an initial estimate
of it is needed in the first round of fitting, for which we assume
the same as that in the filters, i.e., cg = 3 X 1073 L.

Given that (39) and (@0) are equally weighted, the joint
optimization function in the LS manner can be written as

k2

argmin E
b1,b2,b3 t=k;

(07 + ®3). (42)

First, we set sensor noise the same as that in [[78] by using
R = 10*. This information is precisely provided to the EKF,
UKEF, PF and the unbiased O2 inference while the biased
02 inference does not need it. The simulation results are
given in Fig. 7 for the altitude truth and estimates given by
different estimators in one trial and the RMSEs of the altitude,
velocity and ballistic coefficient, respectively. It is shown that
at altitudes near h; =~ H, all estimators are highly inaccurate.

Surprisingly, except near h; =~ H when the calculation given
by (32) is very inaccurate, the O2 inference outperforms the
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EKF/UKF/PF remarkably. This indicates that the filters are in
fact ineffective most of the time according to the definition
of “effectiveness” given in [4]. However, both de-biasing and
fitting approaches have not improved the biased O2 inference
by much. The average altitude RMSEs and computing times
of different estimators are given in Table Overall, the
online fitting inference achieves the best performance while
the PF does the worst in altitude estimation. Both the (biased
and unbiased) O2 inferences and the online fitting approach
are inferior to the ideally-modeled filters in the estimation of
the velocity and constant ballistic coefficient, which are not
directly-observed variables. On the computing speed, the O2
inference is unsurprisingly much faster than the others while
the PF is the slowest.

Second, we apply a larger sensor noise R = 10° which is
correctly provided to all estimators and all the other settings
remain the same. The simulation results are given in Fig. 8
and Table [V] for similar contexts to that of Fig. 7 and Table
respectively. Most of the trends in Fig. 8 are similar to
those in Fig. 7. We can see that the O2 inference, unbiased
02 inference and our fitting approach outperform all filters
including the EKF, UKF and the PF for altitude estimation.
While the de-biasing still does not improve the O2 inference,
the fitting does so. For more insights, Figs. 7 and 8 show
that the fitting approach benefits the most around time 10
(when h; =~ H) when all estimators suffer from unstable
estimation. The biased and unbiased O2 inferences and the
online fitting approach are again significantly inferior to filters
in estimating the velocity and ballistic coefficient. This exposes
one limitation of the data driven approaches including the O2
inferences and the online fitting approach, to which we need
to develop more thorough data mining solutions to explore
the deterministic model information hidden in @7)-(29). At
the current stage, we primarily concentrated on the directly-
observed state and position-trajectory inference.

TABLE IV
AVERAGE ALTITUDE RMSE AND COMPUTING TIME OF DIFFERENT
ESTIMATORS (R = 10%)

Estimators Aver. Altitude RMSE(ft) Compt. Time (s)
EKF 355 0.1517
UKF 349 0.1588

PF 1664 24.63
Biased 02 396 27x10~%
Unbiased 02 392 0.0022
Fitting 212 2.324
TABLE V

AVERAGE ALTITUDE RMSE AND COMPUTING TIME OF DIFFERENT

ESTIMATORS (R = 10°)

Estimators Aver. Altitude RMSE(ft) Compt. Time (s)
EKF 1262 0.1518
UKF 1213 0.1601
PF 6970 16.41
Biased 02 1002 3.18x10~ %
Unbiased 02 1031 0.0023
Fitting 613 2.517

VII. CONCLUSION

For a class of target tracking problems with poor a priori
knowledge about the system, we presented an online sensor
data fitting framework for approximating the continuous-time
trajectory function. This leads to a unified methodology for
joint smoothing, tracking and forecasting and provides a flex-
ible and reliable solution to use information such as “the target
is descending”, “the target is about passing by a location” or
“the target goes to a fixed destination”. Such information is
common and important in reality, but is often overlooked or
treated in an ad-hoc manner in existing solutions because they
cannot be quantitatively defined as statistical knowledge.

In a variety of representative scenarios, the proposed meth-
ods perform comparably to classic suboptimal algorithms
that have complete and correct model information and can
even outperform them if, more commonly in reality, they
are provided with incorrect sensor statistical information or
are improperly initialized. Moreover, the present sliding time
window fitting approach does not need to take ad-hoc mul-
tiple/adaptive models to handle target maneuver, as long as
the target trajectory remains smooth over the time window.
This adds greatly to the reliability, flexibility and ease of
implementation of the framework.

Unifying the tasks of smoothing, tracking and forecasting on
a single estimation framework is of high interest to many real
world problems of significance, where the history, the current
and the future of the target’s state are desired simultaneously.
Also, continuous time trajectory acquisition is essential for
detecting and resolving potential trajectory conflicts when
multiple targets exist or compete and for analyzing/learning the
target movement pattern. All of these, together with the rapid
escalation and massive deployment of massive sensors, will
make sensor data-learning/fitting approach more promising.

There is broad space for further development in this di-
rection, including, better data mining solutions to infer the
indirectly-observed variables from the directly-observed vari-
ables (especially when the observation is sparse), to obtain
further statistical knowledge of the estimate (e.g., the accuracy
given in the manner of variance) and data-to-trajectory asso-
ciation for handling multiple (potentially interacting) targets.

APPENDIX
A. Lagrange remainder for linearization

We analyze the linearization error caused by converting a
nonlinear fitting function to a linear one based on the Taylor
series expansion. A Taylor series of a real function f(x) about
a point x = X is given by

F06) = F(0)F00) (504 -+ ) (o0 (x—0)" + R,

where R, is a remainder term known as the Lagrange remain-
der (also known as truncation error), which is given by

(n+1) (%
r_ FUE)
(n+1)!
where X € [xg, x| lies somewhere in the interval [xg, x].
This indicates that the closer the prediction data x is with

Xo, the smaller I?,,. This explains why piecewise/sliding time-
window fitting, is highly suggested in our approach.

)

(x — Xo)"+1
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B. Recursive Least Square Adaptive Filter

Let y = x{ck + e;, be a general 1-dimensional linear
fitting model where x;, and y;, are the system input (regressor)
and output at time k, e, represents an additive noise (i.e.,
the fitting error to be admitted) and c¢; is the parameter
to be recursively estimated for minimizing the square error
S M t(y, — zT¢;)?. The recursive LS algorithm updates
the parameter estimate by the recursion in a time-window

e = ér_1+ Gr(yr — 2} cr_1),

P11y,

Op = ——,
A+ al Py_qxy
1 Py TP,
P.=-(P_, — M 7
A /\+£kapk_1xk-

where the forgetting factor A is usually chosen in [0.9,0.999]
to reduce the influence of past data or chosen as 1 to equally
treat all data in the time window, and the matrix P; is related
to the covariance matrix, but P, # Cov(Cy).
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