
J. Cabestany et al. (Eds.): IWANN 2009, Part I, LNCS 5517, pp. 165–173, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Ensemble Methods for Boosting Visualization Models

Bruno Baruque1, Emilio Corchado1, Aitor Mata2, and Juan M. Corchado2

1 Department of Civil Engineering, University of Burgos, Spain
escorchado@ubu.es, bbaruque@ubu.es

2 Department of Computer Science and Automatics, University of Salamanca, Spain
aitor@usal.es, corchado@usal.es

Abstract. Topology preserving mappings are great tools for data visualization
and inspection in large datasets. This research presents a study of the combination
of different ensemble training techniques with a novel summarization algorithm
for ensembles of topology preserving models. The aim of these techniques is the
increase of the truthfulness of the visualization of the dataset obtained by this kind
of algorithms and, as an extension, the stability conditions of the former. A study
and comparison of the performance of some novel and classical ensemble
techniques, using well-known datasets from the UCI repository (Iris and Wine),
are presented in this paper to test their suitability, in the fields of data visualization
and topology preservation when combined with one of the most widespread of
that kind of models such as the Self-Organizing Map.

Keywords: topology preserving mappings, boosting, bagging, unsupervised
learning.

1 Introduction

From the range of tools that can be used to treat the high amounts of data that industrial
and business operations processes, one of the most useful is the unsupervised leaning, in
the field of artificial neural networks (ANNs). For unsupervised learning only the input
and the network’s internal dynamics are the two elements required. No external
mechanism is used to obtain the results. The present work is centred on one of the major
methods of unsupervised learning: competitive learning, where the output neurons of a
neural network compete among themselves for being the one to be active.

The Self-Organising Map (SOM) [1] is probably the most widely used algorithm
making use of this kind of learning. It is based on an adaptive process in which the
neurons in a neural network gradually become sensitive to different input categories,
or sets of samples in a specific domain of the input space. The SOM was conceived as
a visualization tool to enable the representation of high-dimensional datasets on 2-
dimensional maps and thereby facilitating data interpretation tasks for human experts.

The principal problem of the models based on competitive learning is, as happens
with all ANNs, their instability. This means that even running the same algorithm
several times with the same parameters can lead to rather different results. The
present research is focused on the comparison and study of some novel and classical
ensemble extension versions of the two competitive learning models based on the
topology preserving concept. A novel summarization of topology preserving

166 B. Baruque et al.

ensembles is presented and included in this comparison. This algorithm aims to obtain
a more trustful representation of the datasets by combining the best features of several
trained maps. The summarization algorithms are tested for the SOM model in
combination with two ensemble techniques such as the Bagging [2] and the AdaBoost
[3]. The purpose of this comparison is to verify if the performance of these
unsupervised connectionist models can be improved by means of these ensemble
meta-algorithms. AdaBoost is applied for the first time in this paper in combination
with the WeVoS algorithm.

2 Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm [4] is based on a type of unsupervised
learning called competitive learning; an adaptive process in which the neurons in a
neural network gradually become sensitive to different input categories, sets of
samples in a specific domain of the input space [5]. Its aim is to produce a low
dimensional representation of the training samples while preserving the topological
properties of the input space.

The main feature of the SOM algorithm is that the neighbours on the lattice are
also allowed to learn – i.e. to adapt their characteristics to the input - as well as the
winning neuron. Thus, the neighbouring neurons gradually come to represent similar
inputs, and their representations become ordered on the map lattice.

This updating of neighbourhood neurons in SOM can be expressed as:

())()(),,()()()1(twtxtkvttwtw vkk −+=+ ηα (1)

where, wk is the weight vector associated with neuron k;)(tα is the learning rate of
the algorithm; t)k,η(v, is the neighbourhood function (usually, the Gaussian function
or a difference of Gaussians), in which v represents the position of the winning neuron
in the lattice, or the best matching unit (BMU); k, the positions of neighbouring
neurons and x , the network input.

3 Quality Measures

Several quality measures have been proposed in literature to study the reliability of
the results displayed by topology preserving models in representing the dataset that
have been trained with [6, 7]. There is not a global and unified one, but rather a set of
complementary ones, as each of them asses a specific characteristic of the
performance of the map in different visual representation areas. The three used in this
study are briefly presented in the following paragraphs.

Classification Error [8]. Topology preserving models can be easily adapted for
classification of new samples using a semi-supervised procedure. A high value in the
classification accuracy rate implies that the units of the map are reacting in a more
consistent way to the classes of the samples that are presented. As a consequence, the
map should represent the data distribution more precisely.

 Ensemble Methods for Boosting Visualization Models 167

Topographic Error [9]. It consists on finding the first two best matching units
(BMU) for each entry of the dataset and testing whether the second is in the direct
neighbourhood of the first or not.
Distortion [10, 11]. When using a constant radius for the neighbourhood function of
the learning phase of a SOM; the algorithm optimizes a particular function. This
function can be used to quantify in a more trustful way than the previous one, the
overall topology preservation of a map by means of a measure, called distortion
measure in this work.
Goodness of Map [12]. This measure combines two different error measures: the
square quantization error and the distortion. It takes account of both the distance
between the input and the BMU and the distance between the first BMU and the
second BMU in the shortest path between both along the grid map units, calculated
solely with units that are direct neighbours in the map.

4 Unsupervised Competitive Learning Ensembles

The ultimate goal of constructing an ensemble is to improve the performance obtained
by a single working unit. When talking about classification it is generally accepted that
the sets of patterns misclassified by the different classifiers would not necessarily
overlap. This suggests that different classifier designs potentially offer complementary
information about the patterns to be classified and could be harnessed to improve the
performance of the selected classifier [13]. Many ensemble models and theories have
been previously developed and have been applied mainly to models designed
specifically for classification, especially supervised classifiers [14]. In the present study
the central idea is to verify the improvements that an ensemble technique can provide in
the multi-dimensional data visualization [15] field over an unsupervised learning
process such as the Competitive Learning.

4.1 Bagging and AdaBoosting

Boosting meta-algorithms consists on training a simple classifier in several stages by
incrementally adding new capacities to the current learned function. In the case of the
present work the decision taken was to begin by implementing simpler boosting
algorithm to initially study its effect on some topology preserving algorithms.
Bagging and AdaBoost are the two boosting selected.

Bagging (or bootstrap aggregating) [2] is one of the simplest techniques for
ensemble construction. It consists on training each of the classifiers composing the
ensemble separately using a different subset of the main training dataset. This is
accomplished by using re-sampling with replacement over the training set. The
technique provides the ensemble with a balance between variability and similarity.

The idea of AdaBoost [3] is very similar to that of the Bagging. The difference is
that it is taken into accounts which of the training samples are not correctly classified
by the current classifier. When a sample is not well classified its associated
probability is increased, so there are more chances that it will be presented to the next
trained classifier as input. That way, the ensemble concentrates in the samples that are
harder to classify, improving its learning capabilities. There have been proposed two

168 B. Baruque et al.

slightly different versions of the algorithm [15]. AdaBoost.M1 is recommended for
datasets with samples that belong to two different classes while AdaBoost.M2 is
recommended for dataset with more than two different classes.

The Adaboost algorithm requires a measure of accuracy of classification of each of
the components of the ensemble. Therefore, a semi-supervised learning technique [8]
is applied in this case to enable its use under the frame of topology preserving models.

4.2 Summarizing Some Applied Ensembles Techniques

Several algorithms for fusion of maps have been tested and reviewed recently by the
authors of this work [16, 17].

In this case, an algorithm devised by the authors of this work is used to generate
the final network summarizing the results obtained by the different networks included
in the ensemble. It is called Weighted Voting Summarization (WeVoS) [18]. As the
SOM is mainly designed as visualization tools, it is desirable that a combination of
several of this kind of maps presents a truthful representation of data for visual
inspection, based in the parts of the maps that were representing that portion of the
data space the most correctly. The WeVoS tries to achieve this by taking into account
one of the most important features of these algorithms: topology preservation. To do
so, it obtains the final units of the map by a weighted voting among the units in the
same position in the different maps, according to a quality measure. This measure can
be any of the previously presented or other found in literature, as long as can be
calculated in a unit by unit basis.

Algorithm 1. Weighted Voting Superposition (WeVoS)

1: train several networks by using the bagging (re-sampling with replacement) meta-algorithm
2: for each map (m) in the ensemble
3: for each unit position (p) of the map
4: calculate the quality measure/error chosen for the current unit
5: end
6: end
7: calculate an accumulated quality/error total for each homologous set of units Q(p) in all

maps
8: calculate an accumulated total of the number of data entries recognized by an homologous

set of units in all maps D(p)
9: for each unit position (p)
10: initialize the fused map (fus) by calculating the centroid (w’) of the units of all maps in

that position (p)
11: end
12: for each map (m) in the ensemble
13: for each unit position (p) of the map
14: calculate the vote weight of the neuron (p) in the map (m) by using Eq. 2
15: feed the weight vector of the neuron (p), as if it were a network input, into the fused

map (fus), using the weight of the vote calculated in Eq. 2 as the learning rate and the
index of that same neuron (p) as the index of the BMU.
The unit of the composing ensemble (wp) is thereby approximated to the unit of the
final map (w’) according to its weighting system.

16: end
17: end

 Ensemble Methods for Boosting Visualization Models 169

The voting process used is the one described in Eq. 2:

∑∑
∑

==

⋅ M

i
ip

mp
M

i
ip

mp
mp

q

q

b

b
=V

1
,

,

1
,

,
,

(2)

where, Vp,m is the weight of the vote for the unit included in map m of the ensemble,
in its in position p, M is the total number of maps in the ensemble, bp,m is the binary
vector used for marking the dataset entries recognized by unit in position p of map m,
and qp,m is the value of the desired quality measure for unit in position p of map m.

A detailed pseudo-code of the WeVoS algorithm is presented in Table 1.

5 Experiment Details

Several experiments have been performed to check the suitability of using the
previously described boosting and combining techniques under the frame of the
mentioned topology preserving models. The datasets selected are Iris and Wine that
were obtained from the UCI repository [19].

For all the tests involving this combination of networks the procedure is the same.
A simple n-fold cross-validation is used in order to employ all data available for
training and testing the model and having several executions to calculate an average
of its performance. In each step of the cross-validation first, an ensemble of networks
must be obtained. The way the ensemble is trained does not affect the way the
combination is computed. Then the computation of the combination is performed.
Finally, both the ensemble and the combination generated from it are tested
employing the test fold.

Visualization results are displayed in Fig.1 while analytical results appear in Fig.2.
In Fig. 1 the maps obtained by the different combination of algorithms are displayed.
Fig. 1 shows the results of applying a different ensemble algorithm to the same
dataset with the same topology preserving algorithm. Both Adaboost.M1 and
Adaboost.M2 have been tested for the sake of comparison taking into account that
first algorithm can be applied also to multi-class datasets, although the second one
should be more suitable. All SOMs in all ensembles showed where trained using the
same parameters. Fig. 1(a) displays the map obtained by a single SOM. It contains
three different classes, one of them (class one, represented by circles) clearly
separated from the other two. Fig. 1(b) represents the summary obtained by the
WeVoS algorithm over an ensemble trained using the bagging meta-algorithm. In this
case, as all dataset entries are considered of the same importance in all iterations a
smooth map is obtained. It is worth noting that classes are displayed in a more
compact way than in the single SOM. Class 1 appears more distant to class 2
(squares) and class 2 and 3 (triangles) are more horizontally separated in the top of the
image, although this separation is not so clear in the middle-left part of the image.
Fig. 1(c) represents the map obtained from an ensemble trained on AdaBoost.M1
algorithm. As this algorithm tries to concentrate in difficult to classify classes, only
one neuron is used in the final map to represent class 1, which is obviously the most

170 B. Baruque et al.

easy to distinguish from the three of them. This can be considered a desired or not so
desired result, regarding to what the final resultant network is going to be used. In the
case of intending to use the map for classification purposes, this map can be
considered more suitable then the single one. In the case of intending to use the map
for visualization purposes, this could be considered quite the contrary. Finally, the
result of using the Adaboost.M2 is showed in Fig. 1(d). As this algorithm uses a finer
granularity for classification than the previous version, it again represents class 1 in a
greater detail than the AdaBoost.M1 (Fig. 1(c)), but showing a bit more compact
groups than the single algorithm (Fig. 1(a)) and showing a more clear separation of
groups than the Bagging algorithm (Fig. 1(b)) does.

Fig. 1(a). Single SOM

Fig. 1(b). WeVos from an ensemble trained
using the Bagging algorithm

Fig. 1(c). WeVos from an ensemble trained
using the AdaBoost.M1 algorithm

Fig. 1(d). WeVos from an ensemble trained
using the AdaBoost.M2 algorithm

Fig. 1. This figure shows the 2D maps representing the Iris dataset. Each figure represents a
map obtained by training the ensemble of SOM algorithms using a different meta-algorithm
and the applying the WeVoS algorithm to all of them.

 Ensemble Methods for Boosting Visualization Models 171

Fig. 2(a). Classification Error

Fig. 2(b). Topographic Error

Fig. 2(c). Distortion

Fig. 2(d). Goodness of Approximation

Fig. 2. Displays the quality of maps measures for each of the ensemble models presented,
along with the corresponding single model. All models were trained and tested using the
Wine dataset. The X-axis represents the number of single maps composing each of the
ensembles and the Y-axis represents the value of each measure.

Fig. 2 represents the results of the calculation of the different quality measures
previously described over the different algorithms described. All are error measures,
so the desired value is always as close to 0 as possible.

In Fig. 2, the quality measure values obtained from the ensemble algorithms are
measured from their corresponding WeVoS summarization, while data from single
models is obviously obtained directly by that model. The WeVoS algorithm has
previously been compared with other summarization methods (Fusion by Euclidean
distance [20], Fusion by similarity in Voronoi polygons [21]), showing an
improvement in its results [18]. The results of those models are not included in this
work for the sake of brevity. Fig. 2(a) represents the classification error of the
different variants under study. Obviously, as that is their original purpose, the maps
obtained through ensemble algorithms outperform the single model. Fig 2(b)
represents the topographic ordering of the final map. Again, ensemble models obtain
lower errors than the single one, especially the two variants of AdaBoost. Fig 2(c)

172 B. Baruque et al.

measures in a greater detail the topological ordering of the maps and shows a different
situation than Fig. 2(b) for the AdaBoost algorithm. This points to an overfitting
problem. Finally, Fig. 2(d) represents a measure combining quantization and
distortion errors. In this case, the results for the two variants of AdaBoost were
expected, as the algorithm tries to concentrate not on the whole dataset, but on the
most difficult to classify samples of it, increasing the distance to other samples. The
bagging algorithm obtains lower error, although a bit higher than the simple model.
This is due to the nature of the WeVoS algorithm, which benefits the topology
preservation of the summary over the quantization side of the model, being the first
one of the most the characteristic features of the family of models under study.

6 Conclusions and Future Work

This study presents an interesting mixture of techniques for representation of multi-
dimensional data in 2-D maps. They are based on the combination of several maps
trained over slightly different datasets to form an ensemble of networks with self-
organizing capabilities. This idea can be especially useful when a reduced dataset is
available. The training of the ensemble of networks has been tested by using the
bagging and boosting techniques for their comparison. As an ensemble of maps is
impossible to represent, a summarization algorithm is also presented and used.

These techniques have been tested in two widely known real datasets. Future work
will include far exhaustive testing of the presented combination of techniques using
several more complex datasets, as well as adapting the present model to other novel
boosting meta-algorithms to check if more improvements can be obtained. It is
reasonable to think that, adapting the AdaBoost algorithm to enhance other
capabilities of the SOM, such as topology preservation, these results can be improved.

Also the problem of the overfitting when using the AdaBoost algorithm will be
subject of further analysis by authors of this paper.

Acknowledgments

This research has been partially supported through project BU006A08 by the Junta de
Castilla y León.

References

1. Kohonen, T.: Self-organizing maps. Series in Information Sciences, vol. 30. Springer,
Berlin (1995)

2. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
3. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and

an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
4. Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)
5. Kohonen, T., Lehtio, P., Rovamo, J., et al.: A Principle of Neural Associative Memory.

Neuroscience 2, 1065–1076 (1977)
6. Pölzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In:

WDA 2004, pp. 67–82 (2004)

 Ensemble Methods for Boosting Visualization Models 173

7. Polani, D.: Measures for the organization of self-organizing maps. In: Seiffert, U., Jain,
L.C. (eds.) Self-Organizing Neural Networks: Recent Advances and Applications. Studies
in Fuzziness and Soft Computing, vol. 16, pp. 13–44. Physica-Verlag, Heidelberg (2003)

8. Vesanto, J.: Data Mining Techniques Based on the Self-Organizing Map, 63 (1997)
9. Kiviluoto, K.: Topology Preservation in Self-Organizing Maps. In: ICNN 1996, vol. 1, pp.

294–299 (1996)
10. Lampinen, J.: On Clustering Properties of Hierarchical Self-Organizing Maps. Artificial

Neural Networks 2, II, 1219–1222 (1992)
11. Vesanto, J., Sulkava, M., Hollmén, J.: On the Decomposition of the Self-Organizing Map

Distortion Measure. In: WSOM 2003, pp. 11–16 (2003)
12. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen,

W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer,
Heidelberg (1996)

13. Heskes, T.: Balancing between Bagging and Bumping. NIPS 9, 466–472 (1997)
14. Schwenk, H., Bengio, Y.: Boosting Neural Networks. Neural Computation 12, 1869–1887

(2000)
15. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm, pp. 148–156

(1996)
16. Baruque, B., Corchado, E., Yin, H.: Quality of Adaptation of Fusion ViSOM. In: Yin, H.,

Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp.
728–738. Springer, Heidelberg (2007)

17. Corchado, E., Baruque, B., Yin, H.: Boosting Unsupervised Competitive Learning
Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007.
LNCS, vol. 4668, pp. 339–348. Springer, Heidelberg (2007)

18. Baruque, B., Corchado, E., Rovira, J., et al.: Application of Topology Preserving
Ensembles for Sensory Assessment in the Food Industry, pp. 491–497 (2008)

19. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007) (2008)
20. Georgakis, A., Li, H., Gordan, M.: An Ensemble of SOM Networks for Document

Organization and Retrieval. In: AKRR 2005, pp. 6–141 (2005)
21. Saavedra, C., Salas, R., Moreno, S., et al.: Fusion of Self Organizing Maps. In: Sandoval,

F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp.
227–234. Springer, Heidelberg (2007)

	Ensemble Methods for Boosting Visualization Models
	Introduction
	Self-Organizing Maps
	Quality Measures
	Unsupervised Competitive Learning Ensembles
	Bagging and AdaBoosting
	Summarizing Some Applied Ensembles Techniques

	Experiment Details
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

