
S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 971–977, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Evolutionary Approach for Sample-Based Clustering on
Microarray Data

Daniel Glez-Peña1, Fernando Díaz2, José R. Méndez1, Juan M. Corchado3,
and Florentino Fdez-Riverola1

1 ESEI: Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico,
Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
{dgpena, moncho.mendez, riverola}@uvigo.es

2 Dept. Informática, University of Valladolid, Escuela Universitaria de Informática, Plaza Santa
Eulalia, 9-11, 40005, Segovia, Spain

fdiaz@infor.uva.es
3 Dept. Informática y Automática, University of Salamanca, Plaza de la Merced s/n, 37008,

Salamanca, Spain
corchado@usal.es

Abstract. Sample-based clustering is one of the most common methods for dis-
covering disease subtypes as well as unknown taxonomies. By revealing hidden
structures in microarray data, cluster analysis can potentially lead to more tai-
lored therapies for patients as well as better diagnostic procedures. In this work,
we present a novel method for automatically discovering clusters of samples
which are coherent from a genetic point of view. Each possible cluster is char-
acterized by a fuzzy pattern which maintains a fuzzy discretization of relevant
gene expression values. Noise genes are identified and removed from the fuzzy
pattern based on their probability of appearance. Possible clusters are randomly
constructed and iteratively refined by following a probabilistic search and an
optimization schema. Experimental results over publicly available microarray
data show the effectiveness of the proposed method.

Keywords: simulated annealing, sample-based clustering, discriminant fuzzy
pattern, microarray data.

1 Introduction and Motivation

Within a gene expression matrix, there are usually several particular macroscopic
phenotypes of samples related to some diseases or drug effects, such as diseased sam-
ples, normal samples or drug treated samples. The goal of sample-based clustering is
to find the phenotype structures or sub-structure of these samples. Many conventional
clustering algorithms have been adapted or directly applied to gene expression data
where the signal-to-noise ratio may seriously degrade the quality and reliability of
clustering results. This has the effect of obscuring clustering in samples that may be
evident only when looking at a subset of genes.

In this context, existing sample-based clustering methods can be (i) directly applied
to cluster samples using all the genes as features (i.e., classical techniques as

972 D. Glez-Peña et al.

K-means, SOM, HC, etc.) or (ii) executed after a set of informative genes are identi-
fied. The problem with the first approach is the signal-to-noise ratio, which is known
to seriously reduce the accuracy of clustering results due to the existence of noise and
outliers of the samples [1]. To overcome such difficulty, particular methods can be
applied to indentify informative genes and reduce gene dimensionality prior to clus-
tering samples in order to detect their phenotypes. In this context, both supervised and
unsupervised informative gene selection techniques have been developed.

While supervised informative gene selection techniques often obtain high cluster-
ing accuracy rates, unsupervised informative gene selection methods are more com-
plex because they assume no phenotype information being assigned to any sample [2].
In such a situation, two general strategies have been adopted to address the lack of
prior knowledge: (i) unsupervised gene selection, that aims to reduce the number of
genes before clustering samples by using some statistical models [3-5] and (ii) interre-
lated clustering, that takes benefits of utilizing the relationship between the genes and
samples to perform gene selection and sample clustering simultaneously in an
iterative paradigm [6-10].

In this contribution we propose a simulated annealing-based algorithm for iterative
class discovery that uses a novel fuzzy logic method for informative gene selection.
The interrelated clustering process carried out is based on an iterative approach where
possible clusters are randomly constructed and evaluated by following a probabilistic
search and an optimization schema. The rest of the paper is structured as follows:
Section 2 introduces the details of our proposed technique discussing relevant aspects
of the whole algorithm. Section 3 presents the experimental setup carried out and the
results obtained from a publicly available microarray data set. Finally, Section 4
summarizes the main conclusions extracted from this work.

2 Iterative Class Discovery Algorithm

In this section we introduced the proposed method for automatically discovering clus-
ters of samples which are coherent from a genetic point of view. Each possible cluster
is characterized by a fuzzy pattern which maintains a fuzzy discretization of relevant
gene expression values. Noise genes are identified and removed from the fuzzy pattern
based on their probability of appearance. Possible clusters are randomly constructed
and iteratively refined by following a probabilistic search and an optimization schema.

2.1 Selecting Relevant Genes

In order to identify potential valuable genes, we use part of a previous successful gene
selection technique called DFP (Discriminant Fuzzy Pattern) [11]. Our whole DFP
algorithm comprises of three main steps. First, we represent each gene value in terms
of one from the following linguistic labels: Low, Medium, High and their intersec-
tions LowMedium and MediumHigh. The output is a fuzzy microarray descriptor
(FMD) for each existing sample (microarray). The second phase aims to find all genes
that best explain each class, constructing a supervised fuzzy pattern (FP) for each
pathology. Starting from the previous obtained FPs, our technique discriminates those
genes that can provide a substantial discernibility between existing classes, generating
a unique discriminant fuzzy pattern (DFP). In our present work, we only use steps one
and two of the DFP algorithm.

 An Evolutionary Approach for Sample-Based Clustering on Microarray Data 973

2.2 Filtering Noisy Genes

In order to discard those genes that belong to a given cluster of samples due only to
pure chance, we deal with the concept of ‘noisy genes’. As the uncertainty decreases
(there are predominance of one expression level over the other ones for all the genes
in the available set of microarrays) the number of noise genes trends upward (the
amount of information encoded by the data also decreases and then, there are more
irrelevant genes). When uncertainty increases, the amount of information also grows
and more genes are necessary to distinguish arrays in absence of other information.

2.3 Assessing the Value of a Cluster

Our cost function for evaluating each cluster combines two factors: (i) the number of
genes in the fuzzy pattern associated to each cluster of the partition and (ii) the size of
such cluster. The first factor in the cost function models the genetic coherence of a
cluster. Assuming this hypothesis, it is expected that for clusters with equal sizes, the
number of genes in a fuzzy pattern will be greater if the genetic coherence of the
cluster is higher. The second factor is relevant since it has been experimentally ob-
served that meaningful genes in great clusters (after noisy genes have been filtered)
are several orders of magnitude inferior to meaningful genes computed in small clus-
ters. This fact is reasonable because it will be more probable when the number of
possibilities is also more reduced. Therefore, the size factor in the cost function is
needed for doing comparable clusters of different size.

2.4 Algorithm

The application of our simulated annealing approach to cluster microarrays is as fol-
lows. First of all, we consider a pool which contains the set of m microarrays that
must be clusterized into k different and unknown groups. In the final solution, some
microarrays can stay in the pool without being associated to any cluster. Initially, a
first solution to the problem (a partition of microarrays) is constructed randomly. All
the microarrays of the pool are distributed randomly among k classes, where k is the
desired number of clusters of the partition (the whole microarrays are spread propor-
tionally among the k clusters and the pool). Figure 1 shows the pseudo-code of the
general algorithm.

On every step a neighbour solution is determined by choosing one from the follow-
ing alternatives: (i) either moving a randomly chosen microarray from the pool to a
cluster (perhaps empty), (ii) or by moving a randomly chosen microarray from a clus-
ter to the pool, (iii) or by exchanging randomly chosen microarrays among clusters,
(iv) or by exchanging randomly chosen microarrays among a cluster and the pool, and
(v) or by moving a randomly chosen microarray from one cluster to another cluster.
The neighbour solutions of lower cost obtained in this way are always accepted,
whereas the solutions with a higher cost are accepted with a given probability

The algorithm stops if equilibrium is encountered. We define that equilibrium is
reached if after 50 stages of temperature reduction the best solution can not be im-
proved. Opposed to the classical approach in which a solution to the problem is taken

974 D. Glez-Peña et al.

01 Create an initial, old_solution as an initial partition
in k clusters of the microarrays in pool
02 best_solution old_solution;
03 equilibrium_conter 0;
04 T cost(old_solution);
05 repeat
06 old_solution best_solution;
07 for iteration_counter 1 to n do
08 annealing_step(old_solution, best_solution);
09 end for;
10 T T · α;
11 equilibrium_counter equilibrium_counter + 1;
12 until equilibrium_counter > 50;

Fig. 1. General pseudo-code of the simulated annealing-based clustering algorithm

as the last solution obtained in the annealing process, we memorize the best solution
found during the whole annealing process. Moreover, at the beginning of each tem-
perature epoch, the search is restarted from the best solution reached for the moment
(Cf. line 6 of the main procedure presented in Figure1).

Summing up, the annealing algorithm performs the local search by sampling the
neighbourhood randomly. It attempts to avoid becoming prematurely trapped in a
local optimum by sometimes accepting a low-grade solution. The acceptance level
depends on the magnitude of the increment of the solution cost and on the spent
search time.

3 Experimental Setup and Results

Dealing with unsupervised classification, it is very difficult to test the ability of
a method to perform the clustering since there is no supervision of the process.
In [12] the authors proposed that lymphoblastic leukemias with MLL transloca-
tions (mixed-lineage leukemia) constitute a distinct disease, denoted as MLL,
and show that the differences in gene expression are robust enough to classify
leukemias correctly as MLL, acute lymphoblastic leukemia (ALL) or acute mye-
loid leukemia (AML). The public dataset of this work has been used to test our
proposal. The complete group of samples consists of 24 patients with B-
Precursor ALL (ALL), 20 patients with MLL rearranged B-precursor ALL
(MLL) and 28 patients with acute myeloid leukemia (AML). All the samples
were analyzed using the Affymetrix GeneChip U95a which contains 12600
known genes.

In this sense, the classification into different groups proposed by [12] is assumed to
be the reference partition of samples in our work. The results of the proposed cluster-
ing algorithm working with this dataset are shown in Table 1. Table 1 presents the
percentage of the times that each available microarray has been grouped together with
other microarrays belonging to the reference groups (ALL, AML and MLL) in the 10
executions of the algorithm.

 An Evolutionary Approach for Sample-Based Clustering on Microarray Data 975

Table 1. Clustering carried out by the proposed algorithm using the dataset presented in Arm-
strong et al. [12]

Id . Array ALL-mll all-mll AML-mll MLL-{all|aml}
ALL-03 0.17 0.50 0.33
ALL-61 0.25 0.75
ALL-06 1.00
ALL-08 1.00
ALL-60 1.00
ALL-11 0.90 0.10
ALL-19 0.90 0.10
ALL-07 0.89 0.11
ALL-58 0.89 0.11
ALL-59 0.89 0.11
ALL-05 0.88 0.13
ALL-13 0.86 0.14
ALL-02 0.80 0.10 0.10
ALL-20 0.78 0.22
ALL-16 0.75 0.25
ALL-10 0.70 0.10 0.20
ALL-14 0.70 0.10 0.20
ALL-09 0.67 0.22 0.11
ALL-15 0.57 0.14 0.29
ALL-01 0.50 0.25 0.25
ALL-17 0.50 0.10 0.10 0.30
ALL-18 0.50 0.50
ALL-12 0.38 0.50 0.13
ALL-04 0.25 0.63 0.13
AML-38 1.00
AML-39 1.00
AML-41 1.00
AML-42 1.00
AML-43 1.00
AML-44 1.00
AML-46 1.00
AML-49 1.00
AML-50 1.00
AML-51 1.00
AML-52 1.00
AML-53 1.00
AML-54 1.00
AML-57 1.00
AML-66 1.00
AML-68 1.00
AML-69 1.00
AML-70 1.00
AML-71 1.00
AML-72 1.00
AML-40 0.90 0.10
AML-56 0.90 0.10
AML-67 0.90 0.10
AML-65 0.11 0.89
AML-55 0.11 0.78 0.11
AML-47 0.70 0.30
AML-48 0.57 0.43
AML-45 0.83 0.17

976 D. Glez-Peña et al.

Table 1. (continued)

Id . Array ALL-mll all-mll AML-mll MLL-{all|aml}
MLL-33 0.11 0.11 0.78
MLL-29 0.25 0.75
MLL-31 0.25 0.75
MLL-26 0.29 0.71
MLL-23 0.33 0.67
MLL-36 0.11 0.22 0.67
MLL-22 0.13 0.25 0.63
MLL-64 0.30 0.10 0.60
MLL-35 0.11 0.33 0.56
MLL-21 0.25 0.25 0.50
MLL-27 0.33 0.17 0.50
MLL-30 0.40 0.10 0.50
MLL-63 0.20 0.10 0.20 0.50
MLL-32 0.56 0.44
MLL-24 0.29 0.14 0.14 0.43
MLL-37 0.10 0.10 0.40 0.40
MLL-62 0.60 0.10 0.30
MLL-28 0.25 0.38 0.13 0.25
MLL-25 0.14 0.71 0.14
MLL-34 0.25 0.63 0.13

From Table 1 it can be viewed that the AML samples form a group whose samples
are clearly distinguished from the rest (only sample AML-45 is mixed with other
samples of ALL or MLL clusters, and sample ALL-03 is grouped in a 50% of the
executions with other samples of the AML cluster). The confusion is greater between
groups ALL and MLL since several samples of type MLL are grouped majorly with
samples of ALL group (for example, samples MLL-32 and MLL-62), others are also
grouped in a balanced way with samples of ALL/MLL group (MLL-25, MLL-28,
MLL-34, ALL-04, ALL-12, and ALL-18), and the sample ALL-61 is grouped ma-
jorly with samples of MLL group. These results are reasonable since AML (Acute
Myeloid Leukemia) are a different family from the Lymphoblastic Leukemias (ALL
and MLL), and the set of MLL samples is speculated to be a potential subtype of the
class of ALL.

4 Conclusion

The iterative class discovery method takes advantage of the properties of fuzzy logic
and the theory of fuzzy sets for dealing with gene expression unsharp boundaries in
which membership is a matter of degree. This method can be used to discover parti-
tions in which biological significance is guaranteed by the similitude between the
fuzzy labels assigned to the samples belonging to the cluster. The clustering algorithm
can be easily extended to applications different from clustering microarray data.

Acknowledgments. This work is supported in part by the projects Research on
Translational Bioinformatics (08VIB6) from University of Vigo and Development of
computational tools for the classification and clustering of gene expression data in
order to discover meaningful biological information in cancer diagnosis (ref.

 An Evolutionary Approach for Sample-Based Clustering on Microarray Data 977

VA100A08) from JCyL (Spain). The work of D. Glez-Peña is supported by a María
Barbeito contract from Xunta de Galicia.

References

1. Xing, E.P., Karp, R.M.: Cliff: Clustering of high-dimensional microarray data via iterative
feature filtering using normalized cuts. Bioinformatics 17(1), 306–315 (2001)

2. Jiang, D., Tang, C., Zhang, A.: Cluster Analysis for Gene Expression Data: A Survey.
IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

3. Alter, O., Brown, P.O., Bostein, D.: Singular value decomposition for genome-wide ex-
pression data processing and modeling. Proceedings of the National Academy of Sciences
of the United States of America 97(18), 10101–10106 (2000)

4. Ding, C.: Analysis of gene expression profiles: class discovery and leaf ordering. In: Pro-
ceedings of the Six Annual International Conference on Computational Molecular Biol-
ogy, pp. 127–136 (2002)

5. Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene expression
data. Oxford Bioinformatics 17(9), 763–774 (2000)

6. Ben-Dor, A., Friedman, N., Yakhini, Z.: Class discovery in gene expression data. In: Pro-
ceedings of the fifth Annual International Conference on Computational Biology, pp. 31–
38 (2001)

7. Xing, E.P., Karp, R.M.: Cliff: Clustering of high-dimensional microarray data via iterative
feature filtering using normalized cuts. Oxford Bioinformatics 17(1), 306–315 (2001)

8. von Heydebreck, A., Huber, W., Poustka, A., Vingron, M.: Identifying splits with clear
separation: a new class discovery method for gene expression data. Oxford Bioinformat-
ics 17, 107–114 (2001)

9. Tang, C., Zhang, A., Ramanathan, M.: ESPD: a pattern detection model underlying gene
expression profiles. Oxford Bioinformatics 20(6), 829–838 (2004)

10. Varma, S., Simon, R.: Iterative class discovery and feature selection using Minimal Span-
ning Trees. BMC Bioinformatics 5, 126 (2004)

11. Glez-Peña, D., Álvarez, R., Díaz, F., Fdez-Riverola, F.: DFP: A Bioconductor package for
fuzzy profile identification and gene reduction of microarray data. BMC Bioinformat-
ics 10, 37 (2009)

12. Armstrong, S.A., Stauton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden,
M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations spec-
ify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet-
ics 20, 41–47 (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

