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Abstract. This paper presents an agent specially designed for the prevention 
and detection of SQL injection at the database layer of an application. The 
agent incorporates a Case-based reasoning mechanism whose main characteris-
tic involves a mixture of neural networks that carry out the task of filtering at-
tacks. The agent had been tested and the results obtained are presented in this 
study.  
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1   Introduction 

Database security is a fundamental aspect of all current information systems. There 
are many ways of exploiting the security vulnerability in a relational database. SQL 
injection is one of more common types of attacks at the database layer of desktop and 
Web applications. SQL injection occurs when the intended effect of the SQL sentence 
is changed by inserting SQL keywords or special symbols [1]. The problem of SQL 
injection attacks has been traditionally addressed by using centralized architectures 
[2], [3]. Because this type of solution is incomplete, several types of intrusion detec-
tion system (IDS) solutions have been proposed [4]. Although IDSs are effective, 
there are a number of drawbacks such as a large number of false positives and nega-
tives, limited learning capacity, and limited ability in adapting to changes in attack 
patterns.  

This article presents a CBR-BDI [5] deliberative agent based on the BDI (Belief, 
Desire, Intention) [6] model specifically designed for the detection and prevention of 
SQL injection attacks in database layers. Our study applies a novel case-based reason-
ing (CBR) [7] [8] classification mechanism that incorporates a mixture of neural net-
works capable of making short term predictions [9].  

This proposal is an innovative approach that addresses the problem of SQL injec-
tion attacks by means of a distributed artificial intelligence technique. Specifically, it 
combines the characteristics of multiagent systems such as autonomy, pro-activity, 
social relations, etc., [5] with CBR [7]. CBR Systems are adequate in dealing with 
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SQL injection attacks, insomuch as these systems find solutions to new problems by 
using previous experiences. This fact allows us to equip our classifier agents with a 
great capacity for adapting and learning, thus making them very adept in resolving 
problems in dynamic environments. The system developed within the scope of this 
work proposes a solution which combines a distributed approach and an advanced 
classification system, incorporating the best of both approaches. 

The rest of the paper is structured as follows: section 2 presents the problem that 
has prompted most of this research work. Section 3 focuses on the structure of the 
classifier agent which facilitates the detection and prevention of malicious injection 
attacks, and section 4 explains in detail the classification model integrated within the 
classifier agent. Finally, section 5 describes how the classifier agent has been tested 
inside a multi-agent system and presents the results obtained.  

2   SQL Injection Problem Description 

A SQL injection attack affects the security of personal, social, financial and legal 
information for both individuals and organizations. A SQL injection attack takes 
place when a hacker changes the semantic or syntactic logic of a SQL text string by 
inserting SQL keywords or special symbols within the original SQL command that 
will be executed at the database layer of an application [1]. SQL injection attacks 
occur when user input variables are not strongly typed, thus making them vulnerable 
to attack. As a result, these attacks can produce unauthorized handling of data, re-
trieval of confidential information, and in the worst possible case, taking over control 
of the application server [2]. One of the biggest problems with SQL injection is the 
various forms of vulnerabilities that exist. Some of the better known strategies, such 
as tautologies, syntax errors or illegal queries, and union operators, are easy to detect. 
However other strategies can be extremely complex due to the high number of  
variables that they can generate, thus making their detection very difficult. Some 
examples of these strategies are inference mechanisms, data storage procedures, and 
alternative encoding.  

Traditional security mechanisms such as firewalls or IDSs are not very efficient in 
detecting and preventing these types of attacks. Other approaches based on string 
analysis, along with dynamic and static analyses such as AMNESIA (Analysis and 
Monitoring for Neutralizing SQL Injection Attacks) [2], have the disadvantage of 
addressing just one part of the problem, and therefore deliver only a partial solution.  
Moreover, the approaches based on models for detecting SQL injection attacks are 
very sensitive. With only slight variations of accuracy, they generate a large number 
of false positive and negatives.  

Some innovative proposals are incorporating artificial intelligence and hybrids sys-
tems. Web Application Vulnerability and Error Scanner (WAVES) [10] uses a black-
box technique which includes a machine learning approach. Valeur [4] presents an 
IDS approach which uses a machine learning technique based on a dataset of legal 
transactions. These are used during the training phase prior to monitoring and classi-
fying malicious accesses. Rietta [11] proposed an IDS at the application layer using 
an anomaly detection model which assumes certain behaviour of the traffic generated 
by the SQL queries; that is, elements within the query (sub-queries, literals, keyword 
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SQL). It also applies general statistics and proposes grouping the queries according to 
SQL commands and then comparing them against a previously built model. The SQL 
query that deviates from the normal profile is rejected. Finally, Skaruz [12] proposes 
the use of a neural network. The detection problem becomes a time serial prediction 
problem. All of these approaches have the problem of producing a large number of 
false positive and false negative. In the case of the IDS systems, they are unable to 
recognize unknown attacks because they depend on a signature database. 

Our technique is based on BDI agents that incorporate a CBR mechanism. This is a 
novel approach in detecting and preventing SQL injection attacks. This strategy, 
which is depicted in the following sections, offers a robust and flexible solution for 
confronting SQL injection attacks, thus improving and surpassing previous 
approaches.  

3   Classifier Agent Internal Structure 

Agents are characterized by their autonomy; which gives them the ability to work in 
independently and real-time environments [13]. Because of this and other capacities 
they have, agents are being integrated into security approaches, such as is the case 
with IDS. Some applications of these systems can be found in [14], [15]. However, 
the use of agents in these systems is geared towards the retrieval of information in 
distributed environments, thus taking advantage of their mobility capacity.   The clas-
sifier agent depicted in this work is the core of a multi-agent architecture, focused on 
detecting and preventing SQL injection attacks.  The classifier agent interacts with 
other complementary agents, which are dedicated to tasks such as monitoring traffic, 
pattern matching, manage and interacting with both the user and the database. This 
agent is in charge of classifying SQL queries by means of an anomaly detection 
approach. 

In our work, the agents are based on a BDI model in which beliefs are used as cog-
nitive aptitudes, desires as motivational aptitudes, and intentions as deliberative apti-
tudes in the agents [5]. However, in order to focus on the problem of SQL injection, it 
was necessary to provide the agents with a greater capacity of learning and adapta-
tion, as well as, a greater level of autonomy than a pure BDI model possesses. This is 
possible by providing the classifier agents with a CBR mechanism [7], which allows 
them to “reason” on their own and adapt to changes in the patterns of attacks. Work-
ing with this type of systems, the key concept is that of “case”. A case is defined as a 
previous experience and is composed of three elements: a description of the problem 
that depicts the initial problem; a solution that describes the sequence of actions per-
formed in order to solve the problem; and the final state, which describes the state that 
has been achieved once the solution is applied. To introduce a CBR motor into a BDI 
agent, we represent CBR system cases using BDI and implement a CBR cycle which 
consists of four steps: retrieve, reuse, revise and retain [7][16].   

The classifier CBR-BDI [5] agent analyses a new query at the data base layer, exe-
cuting a CBR cycle. In the retrieval phase, the cases that present a description similar 
to that of the new problem are recovered. The case description is based on elements of 
the SQL query that are extracted through a syntactic analyze process applied to the 
SQL text string. The process of retrieving the cases involves a similarity algorithm. 
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Once the similar cases have been recovered, the reuse phase starts adapting the solu-
tion in order to obtain the best case output for the given object of study. In this phase, 
two neural networks are responsible for receiving the variables as input data in order 
to produce an output response. This is done by a mixture of neural networks which 
use both sigmoidal activation functions and tangential functions. The next phase of 
the CBR cycle is the revise phase in which an expert evaluates the proposed solution. 
Finally, the retain phase is carried out where the system learns from its own experi-
ences from each of the previous phases and updates the database with the solution 
obtained in the query classification.  

As has been mentioned above, the classifier CBR-BDI agent is the core of a  
multi-agent architecture geared towards to detect and classify SQL injection attack in 
distributed environments. Figure 1 shows the classifier CBR-BDI agent in the multi-
agent architecture.  

 

Fig. 1. CBR-BDI agent in the multi-agent architecture 

All the SQL queries are filtered by the classifier CBR-BDI agent. The query con-
sidered legal is executed on the database otherwise the query considered malicious is 
rejected. In the next section, the classification mechanism used in the reuse phase by 
the agent is presented.  

4   Mechanism for the Classification of SQL Injection Attacks  

The classifier agent presented in section 3 incorporates a case-based reasoning system 
that allows the prevention and detection of anomalies by means of a prediction model 
based on neural networks, configured for short-term predictions of intrusions by SQL 
injections. This mechanism uses a memory of cases which identifies past experiences 
with the corresponding indicators that characterize each of the attacks. This paper 
presents a novel classification system that combines the advantages of the CBR sys-
tems, such as learning and adaptation, with the predictive capabilities of a mixture of 
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neural networks. These features make the system innovative for this type of attack, 
and make it very appropriate for its use in different environments. The proposed 
mechanism is responsible for classifying SQL database requests made by users. When 
a user makes a new request by means of a SQL query, it is checked by an agent in 
charge of detection by pattern matching. If it is found an attack firm on the SQL 
string, then the SQL query is labelled as suspicious. Independently of the results of 
the pattern matching, the SQL query is send to a CBR-BDI agent. This query is trans-
formed to a new case of input for a CBR mechanism. The case is constituted by ele-
ments extracted of the SQL string (Affected_Table, Affected_Field, Command_Type, 
Word_GroupBy, Word_OrderBy, Word_Having, Number_And, Number_Or, Num-
ber_Literales, Number_LOL, Length_SQL_String, Cost_Time_CPU, Start_time, 
End_time, Query_Category). The CBR mechanism needs a memory of cases dating 
back at least 4 weeks for the training stage of the neural networks. 

The first phase of the CBR cycle consists of recovering past experience from the 
memory of cases, specifically those with a problem description similar to the current 
request, In order to do this, a cosine similarity-based algorithm is applied, allowing 
the recovery of those cases which are at least 90% similar to the current request. The 
cases recovered are used to train the mixture of neural networks implemented in the 
recovery phase; the neural network with the sigmoidal function is trained with the 
recovered cases that were an attack or not, whereas the neural network with hyper-
bolic function is trained with all the recovered cases (including the suspects). A pre-
liminary analysis of correlations is required to determine the number of neurons of the 
input layer of the neuronal networks. Additionally, it is to normalize the data (i.e., all 
data must be values in the interval [0.1]). The data used to train the mixture of net-
works must not be correlated. With the cases stored after eliminating correlated cases, 
the entries for training the mixture of networks are normalized. It is considered to be 
two neural networks. The result obtained using a mixture of the outputs of the net-
works provides a balanced response and avoids individual tendencies (always taking 
into account the weights that determine which of the two networks is more optimal). 

La mixture of the neural networks intents to solve the individual tendencies by use an 
only neural network. If one only network with a sigmoidal activation function is used, 
then the result provided by the network would tend to be attack or not attack, and no 
suspects would be detected. On the other hand, if only one network with a hyperbolic 
tangent activation is used, then a potential problem could exist in which the majority of 
the results would be identified as suspect although they are being clearly attack or not 
attack. Figure 2 shows the mixture of the neural networks with their activation function.  

The mixture provides a more efficient configuration of the networks, since the 
global result is determined by merging two filters. This way, if the two networks 
classify the user request as an attack, so too will the mixture; and if both agree that it 
is not an attack, the mixture will as well. If there is no concurrence, the system uses 
the result of the network with the least error in the training process or classifies it as a 
suspect. In the reuse phase the two networks are trained by a back-propagation algo-
rithm for the same set of training patterns (in particular, these neural networks are 
named Multilayer Perceptron), using a sigmoidal activation function (which will take 
values in [0.1], where 0 = Illegal and 1 = legal) for a Multilayer Perceptron and a 
hyperbolic tangent activation function for the other Multilayer Perceptron (which take 
values in [-1.1], where -1 = Suspect, 0 = illegal and 1 = legal). 
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Fig. 2. Mixture of the Neural Networks  

The response of both networks is combined, obtaining the mixture of networks de-
noted by y2; where the superscript indicates the number of mixtured networks 
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The number of neurons in the output layer for both Multilayer Perceptrons is 1, and 
is responsible for deciding whether or not there is an attack. The error of the training 
phase for each of the neural networks, can be quantified with formula (2), where P is 
the total number of training patterns. 
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The review stage is performed by an expert, and depending on his opinions, a deci-
sion is made as to whether the case is stored in the memory of cases and whether the 
list of well-known patterns has to be updated in the retain phase. 

5   Results and Conclusions 

The problem of SQL injection attacks on databases supposes a serious threat against 
information systems. This paper has presented a new classification system for detect-
ing SQL injection attacks which combines the advantages of multi-agent systems, 
such as autonomy and distributed problem solving, with the adaptation and learning 
capabilities of CBR systems. Additionally, the system incorporates the prediction 
capabilities that characterize neural networks. An innovative model has been  
presented that provides a significant reduction of the error rate during the classifica-
tion of attacks. To check the validity of the proposed model, a series of test were 
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elaborated which were executed on a memory of cases, specifically developed for 
these tests, and which generated attack consults. The results shown in Table 1 are 
promising: it is possible to observe different techniques for predicting attacks at the 
database layer and the errors associated with misclassifications. All the techniques 
presented in Table 1 have been applied under similar conditions to the same set of 
cases, taking the same problem into account in order to obtain a new case common to 
all the methods. Note that the technique proposed in this article provides the best 
results, with an error in only 0.537% of the cases. 

Table 1. Results obtained after testing different classification techniques 

Forecasting Techniques Successful (%) Approximated Time (secs) 
CBR-BDI Agent (mixture NN) 99.5 2 
Back-Propagation Neural Networks 99.2 2 
Bayesian Forecasting Method 98.2 11 
Exponential Regression 97.8 9 
Polynomial Regression 97.7 8 
Linear Regression 97.6 5 

As shown in Table 2, the Bayesian method is the most accurate statistical method 
since it is based on the likelihood of the events observed.  But it has the disadvantage 
of determining the initial parameters of the algorithm, although it is the fastest of the 
statistical methods. Taking the errors obtained with the different methods into ac-
count, after the CBR-BDI Agent together with the mixture of neural networks and 
Bayesian methods we find the regression models. Because of the non linear behaviour 
of the hackers, linear regression offers the worst results, followed by the polynomial 
and exponential regression. This can be explained by looking at hacker behaviour: as 
the hackers break security measures, the time for their attacks to obtain information 
decreases exponentially. The empirical results show that the best methods are those 
that involve the use of neural networks and, if we consider a mixture of two neural 
networks, the predictions are notably improved. These methods are more accurate 
than statistical methods for detecting attacks to databases because the behaviour of the 
hacker is not linear. The solution presented is an innovative approach to detect SQL 
injection attack, when it is based on multi-agent system, CBR mechanism and a so-
phisticated technique using a mixture of neural networks.  
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