
E. Corchado, A. Abraham, and W. Pedrycz (Eds.): HAIS 2008, LNAI 5271, pp. 46–53, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Classification Agent-Based Techniques for Detecting
Intrusions in Databases

Cristian Pinzón1, Yanira De Paz2, and Rosa Cano3

1 Universidad Tecnológica de Panamá, Av. Manuel Espinosa Batista, Panama
2 Universidad Europea de Madrid, Tajo s/n 28670, Villaviciosa de Odón, Spain

3 Instituto Tecnológico de Colima, Av. Tecnológico s/n, 28976, Mexico
cristian.pinzon@utp.ac.pa, yanirarosario.depaz@uem.es,

rdegca@gmail.com

Abstract. This paper presents an agent specially designed for the prevention
and detection of SQL injection at the database layer of an application. The
agent incorporates a Case-based reasoning mechanism whose main characteris-
tic involves a mixture of neural networks that carry out the task of filtering at-
tacks. The agent had been tested and the results obtained are presented in this
study.

Keywords: SQL injection, multiagent systems, case-based reasoning, neural
networks.

1 Introduction

Database security is a fundamental aspect of all current information systems. There
are many ways of exploiting the security vulnerability in a relational database. SQL
injection is one of more common types of attacks at the database layer of desktop and
Web applications. SQL injection occurs when the intended effect of the SQL sentence
is changed by inserting SQL keywords or special symbols [1]. The problem of SQL
injection attacks has been traditionally addressed by using centralized architectures
[2], [3]. Because this type of solution is incomplete, several types of intrusion detec-
tion system (IDS) solutions have been proposed [4]. Although IDSs are effective,
there are a number of drawbacks such as a large number of false positives and nega-
tives, limited learning capacity, and limited ability in adapting to changes in attack
patterns.

This article presents a CBR-BDI [5] deliberative agent based on the BDI (Belief,
Desire, Intention) [6] model specifically designed for the detection and prevention of
SQL injection attacks in database layers. Our study applies a novel case-based reason-
ing (CBR) [7] [8] classification mechanism that incorporates a mixture of neural net-
works capable of making short term predictions [9].

This proposal is an innovative approach that addresses the problem of SQL injec-
tion attacks by means of a distributed artificial intelligence technique. Specifically, it
combines the characteristics of multiagent systems such as autonomy, pro-activity,
social relations, etc., [5] with CBR [7]. CBR Systems are adequate in dealing with

 Classification Agent-Based Techniques for Detecting Intrusions in Databases 47

SQL injection attacks, insomuch as these systems find solutions to new problems by
using previous experiences. This fact allows us to equip our classifier agents with a
great capacity for adapting and learning, thus making them very adept in resolving
problems in dynamic environments. The system developed within the scope of this
work proposes a solution which combines a distributed approach and an advanced
classification system, incorporating the best of both approaches.

The rest of the paper is structured as follows: section 2 presents the problem that
has prompted most of this research work. Section 3 focuses on the structure of the
classifier agent which facilitates the detection and prevention of malicious injection
attacks, and section 4 explains in detail the classification model integrated within the
classifier agent. Finally, section 5 describes how the classifier agent has been tested
inside a multi-agent system and presents the results obtained.

2 SQL Injection Problem Description

A SQL injection attack affects the security of personal, social, financial and legal
information for both individuals and organizations. A SQL injection attack takes
place when a hacker changes the semantic or syntactic logic of a SQL text string by
inserting SQL keywords or special symbols within the original SQL command that
will be executed at the database layer of an application [1]. SQL injection attacks
occur when user input variables are not strongly typed, thus making them vulnerable
to attack. As a result, these attacks can produce unauthorized handling of data, re-
trieval of confidential information, and in the worst possible case, taking over control
of the application server [2]. One of the biggest problems with SQL injection is the
various forms of vulnerabilities that exist. Some of the better known strategies, such
as tautologies, syntax errors or illegal queries, and union operators, are easy to detect.
However other strategies can be extremely complex due to the high number of
variables that they can generate, thus making their detection very difficult. Some
examples of these strategies are inference mechanisms, data storage procedures, and
alternative encoding.

Traditional security mechanisms such as firewalls or IDSs are not very efficient in
detecting and preventing these types of attacks. Other approaches based on string
analysis, along with dynamic and static analyses such as AMNESIA (Analysis and
Monitoring for Neutralizing SQL Injection Attacks) [2], have the disadvantage of
addressing just one part of the problem, and therefore deliver only a partial solution.
Moreover, the approaches based on models for detecting SQL injection attacks are
very sensitive. With only slight variations of accuracy, they generate a large number
of false positive and negatives.

Some innovative proposals are incorporating artificial intelligence and hybrids sys-
tems. Web Application Vulnerability and Error Scanner (WAVES) [10] uses a black-
box technique which includes a machine learning approach. Valeur [4] presents an
IDS approach which uses a machine learning technique based on a dataset of legal
transactions. These are used during the training phase prior to monitoring and classi-
fying malicious accesses. Rietta [11] proposed an IDS at the application layer using
an anomaly detection model which assumes certain behaviour of the traffic generated
by the SQL queries; that is, elements within the query (sub-queries, literals, keyword

48 C. Pinzón, Y. De Paz, and R. Cano

SQL). It also applies general statistics and proposes grouping the queries according to
SQL commands and then comparing them against a previously built model. The SQL
query that deviates from the normal profile is rejected. Finally, Skaruz [12] proposes
the use of a neural network. The detection problem becomes a time serial prediction
problem. All of these approaches have the problem of producing a large number of
false positive and false negative. In the case of the IDS systems, they are unable to
recognize unknown attacks because they depend on a signature database.

Our technique is based on BDI agents that incorporate a CBR mechanism. This is a
novel approach in detecting and preventing SQL injection attacks. This strategy,
which is depicted in the following sections, offers a robust and flexible solution for
confronting SQL injection attacks, thus improving and surpassing previous
approaches.

3 Classifier Agent Internal Structure

Agents are characterized by their autonomy; which gives them the ability to work in
independently and real-time environments [13]. Because of this and other capacities
they have, agents are being integrated into security approaches, such as is the case
with IDS. Some applications of these systems can be found in [14], [15]. However,
the use of agents in these systems is geared towards the retrieval of information in
distributed environments, thus taking advantage of their mobility capacity. The clas-
sifier agent depicted in this work is the core of a multi-agent architecture, focused on
detecting and preventing SQL injection attacks. The classifier agent interacts with
other complementary agents, which are dedicated to tasks such as monitoring traffic,
pattern matching, manage and interacting with both the user and the database. This
agent is in charge of classifying SQL queries by means of an anomaly detection
approach.

In our work, the agents are based on a BDI model in which beliefs are used as cog-
nitive aptitudes, desires as motivational aptitudes, and intentions as deliberative apti-
tudes in the agents [5]. However, in order to focus on the problem of SQL injection, it
was necessary to provide the agents with a greater capacity of learning and adapta-
tion, as well as, a greater level of autonomy than a pure BDI model possesses. This is
possible by providing the classifier agents with a CBR mechanism [7], which allows
them to “reason” on their own and adapt to changes in the patterns of attacks. Work-
ing with this type of systems, the key concept is that of “case”. A case is defined as a
previous experience and is composed of three elements: a description of the problem
that depicts the initial problem; a solution that describes the sequence of actions per-
formed in order to solve the problem; and the final state, which describes the state that
has been achieved once the solution is applied. To introduce a CBR motor into a BDI
agent, we represent CBR system cases using BDI and implement a CBR cycle which
consists of four steps: retrieve, reuse, revise and retain [7][16].

The classifier CBR-BDI [5] agent analyses a new query at the data base layer, exe-
cuting a CBR cycle. In the retrieval phase, the cases that present a description similar
to that of the new problem are recovered. The case description is based on elements of
the SQL query that are extracted through a syntactic analyze process applied to the
SQL text string. The process of retrieving the cases involves a similarity algorithm.

 Classification Agent-Based Techniques for Detecting Intrusions in Databases 49

Once the similar cases have been recovered, the reuse phase starts adapting the solu-
tion in order to obtain the best case output for the given object of study. In this phase,
two neural networks are responsible for receiving the variables as input data in order
to produce an output response. This is done by a mixture of neural networks which
use both sigmoidal activation functions and tangential functions. The next phase of
the CBR cycle is the revise phase in which an expert evaluates the proposed solution.
Finally, the retain phase is carried out where the system learns from its own experi-
ences from each of the previous phases and updates the database with the solution
obtained in the query classification.

As has been mentioned above, the classifier CBR-BDI agent is the core of a
multi-agent architecture geared towards to detect and classify SQL injection attack in
distributed environments. Figure 1 shows the classifier CBR-BDI agent in the multi-
agent architecture.

Fig. 1. CBR-BDI agent in the multi-agent architecture

All the SQL queries are filtered by the classifier CBR-BDI agent. The query con-
sidered legal is executed on the database otherwise the query considered malicious is
rejected. In the next section, the classification mechanism used in the reuse phase by
the agent is presented.

4 Mechanism for the Classification of SQL Injection Attacks

The classifier agent presented in section 3 incorporates a case-based reasoning system
that allows the prevention and detection of anomalies by means of a prediction model
based on neural networks, configured for short-term predictions of intrusions by SQL
injections. This mechanism uses a memory of cases which identifies past experiences
with the corresponding indicators that characterize each of the attacks. This paper
presents a novel classification system that combines the advantages of the CBR sys-
tems, such as learning and adaptation, with the predictive capabilities of a mixture of

50 C. Pinzón, Y. De Paz, and R. Cano

neural networks. These features make the system innovative for this type of attack,
and make it very appropriate for its use in different environments. The proposed
mechanism is responsible for classifying SQL database requests made by users. When
a user makes a new request by means of a SQL query, it is checked by an agent in
charge of detection by pattern matching. If it is found an attack firm on the SQL
string, then the SQL query is labelled as suspicious. Independently of the results of
the pattern matching, the SQL query is send to a CBR-BDI agent. This query is trans-
formed to a new case of input for a CBR mechanism. The case is constituted by ele-
ments extracted of the SQL string (Affected_Table, Affected_Field, Command_Type,
Word_GroupBy, Word_OrderBy, Word_Having, Number_And, Number_Or, Num-
ber_Literales, Number_LOL, Length_SQL_String, Cost_Time_CPU, Start_time,
End_time, Query_Category). The CBR mechanism needs a memory of cases dating
back at least 4 weeks for the training stage of the neural networks.

The first phase of the CBR cycle consists of recovering past experience from the
memory of cases, specifically those with a problem description similar to the current
request, In order to do this, a cosine similarity-based algorithm is applied, allowing
the recovery of those cases which are at least 90% similar to the current request. The
cases recovered are used to train the mixture of neural networks implemented in the
recovery phase; the neural network with the sigmoidal function is trained with the
recovered cases that were an attack or not, whereas the neural network with hyper-
bolic function is trained with all the recovered cases (including the suspects). A pre-
liminary analysis of correlations is required to determine the number of neurons of the
input layer of the neuronal networks. Additionally, it is to normalize the data (i.e., all
data must be values in the interval [0.1]). The data used to train the mixture of net-
works must not be correlated. With the cases stored after eliminating correlated cases,
the entries for training the mixture of networks are normalized. It is considered to be
two neural networks. The result obtained using a mixture of the outputs of the net-
works provides a balanced response and avoids individual tendencies (always taking
into account the weights that determine which of the two networks is more optimal).

La mixture of the neural networks intents to solve the individual tendencies by use an
only neural network. If one only network with a sigmoidal activation function is used,
then the result provided by the network would tend to be attack or not attack, and no
suspects would be detected. On the other hand, if only one network with a hyperbolic
tangent activation is used, then a potential problem could exist in which the majority of
the results would be identified as suspect although they are being clearly attack or not
attack. Figure 2 shows the mixture of the neural networks with their activation function.

The mixture provides a more efficient configuration of the networks, since the
global result is determined by merging two filters. This way, if the two networks
classify the user request as an attack, so too will the mixture; and if both agree that it
is not an attack, the mixture will as well. If there is no concurrence, the system uses
the result of the network with the least error in the training process or classifies it as a
suspect. In the reuse phase the two networks are trained by a back-propagation algo-
rithm for the same set of training patterns (in particular, these neural networks are
named Multilayer Perceptron), using a sigmoidal activation function (which will take
values in [0.1], where 0 = Illegal and 1 = legal) for a Multilayer Perceptron and a
hyperbolic tangent activation function for the other Multilayer Perceptron (which take
values in [-1.1], where -1 = Suspect, 0 = illegal and 1 = legal).

 Classification Agent-Based Techniques for Detecting Intrusions in Databases 51

Fig. 2. Mixture of the Neural Networks

The response of both networks is combined, obtaining the mixture of networks de-
noted by y2; where the superscript indicates the number of mixtured networks

r

r

r

r

r

ye
e

y ∑
∑ =

−−

=

−−
=

2

1

1
2

1

1

2 1

(1)

The number of neurons in the output layer for both Multilayer Perceptrons is 1, and
is responsible for deciding whether or not there is an attack. The error of the training
phase for each of the neural networks, can be quantified with formula (2), where P is
the total number of training patterns.

∑
=

−=
P

i P

PP

etT

etTForecast

P
Error

1 arg
arg1 (2)

The review stage is performed by an expert, and depending on his opinions, a deci-
sion is made as to whether the case is stored in the memory of cases and whether the
list of well-known patterns has to be updated in the retain phase.

5 Results and Conclusions

The problem of SQL injection attacks on databases supposes a serious threat against
information systems. This paper has presented a new classification system for detect-
ing SQL injection attacks which combines the advantages of multi-agent systems,
such as autonomy and distributed problem solving, with the adaptation and learning
capabilities of CBR systems. Additionally, the system incorporates the prediction
capabilities that characterize neural networks. An innovative model has been
presented that provides a significant reduction of the error rate during the classifica-
tion of attacks. To check the validity of the proposed model, a series of test were

52 C. Pinzón, Y. De Paz, and R. Cano

elaborated which were executed on a memory of cases, specifically developed for
these tests, and which generated attack consults. The results shown in Table 1 are
promising: it is possible to observe different techniques for predicting attacks at the
database layer and the errors associated with misclassifications. All the techniques
presented in Table 1 have been applied under similar conditions to the same set of
cases, taking the same problem into account in order to obtain a new case common to
all the methods. Note that the technique proposed in this article provides the best
results, with an error in only 0.537% of the cases.

Table 1. Results obtained after testing different classification techniques

Forecasting Techniques Successful (%) Approximated Time (secs)
CBR-BDI Agent (mixture NN) 99.5 2
Back-Propagation Neural Networks 99.2 2
Bayesian Forecasting Method 98.2 11
Exponential Regression 97.8 9
Polynomial Regression 97.7 8
Linear Regression 97.6 5

As shown in Table 2, the Bayesian method is the most accurate statistical method
since it is based on the likelihood of the events observed. But it has the disadvantage
of determining the initial parameters of the algorithm, although it is the fastest of the
statistical methods. Taking the errors obtained with the different methods into ac-
count, after the CBR-BDI Agent together with the mixture of neural networks and
Bayesian methods we find the regression models. Because of the non linear behaviour
of the hackers, linear regression offers the worst results, followed by the polynomial
and exponential regression. This can be explained by looking at hacker behaviour: as
the hackers break security measures, the time for their attacks to obtain information
decreases exponentially. The empirical results show that the best methods are those
that involve the use of neural networks and, if we consider a mixture of two neural
networks, the predictions are notably improved. These methods are more accurate
than statistical methods for detecting attacks to databases because the behaviour of the
hacker is not linear. The solution presented is an innovative approach to detect SQL
injection attack, when it is based on multi-agent system, CBR mechanism and a so-
phisticated technique using a mixture of neural networks.

Acknowledgments. This development has been partially supported by the Spanish
Ministry of Science project TIN2006-14630-C03-03.

References

1. Anley, C.: Advanced SQL Injection In SQL Server Applications (2002),
http://www.nextgenss.com/papers/advanced-sql-injection.pdf

2. Halfond, W., Orso, A.: AMNESIA: analysis and monitoring for neutralizing SQL-injection
attacks. In: ASE 2005: 20th IEEE/ACM international Conference on Automated software
engineering, pp. 174–183. ACM, New York (2005)

 Classification Agent-Based Techniques for Detecting Intrusions in Databases 53

3. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static Checking of Dynamically Gener-
ated Queries in Database Applications. ACM Transactions on Software Engineering and
Methodology 16, 14 (2007)

4. Valeur, F., Mutz, D., Vigna, G.: A Learning-Based Approach to the Detection of SQL At-
tacks. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 123–140.
Springer, Heidelberg (2005)

5. Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI
Agents. In: Advances in Case-Based Reasoning. Springer, Heidelberg (2004)

6. Woolridge, M., Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley &
Sons, New York (2002)

7. Corchado, J.M., Laza, R., Borrajo, L., De Luis, Y.A., Valiño, M.: Increasing the Auton-
omy of Deliberative Agents with a Case-Based Reasoning System. International Journal of
Computational Intelligence and Applications 3(1), 101–118 (2003)

8. Fdez-Riverola, F., Iglesias, E.L., Daz, F., Méndez, J.R., Corchado, J.M.: SpamHunting: An
instance-based reasoning system for spam labelling and filtering. Decision Support Sys-
tem 43(3), 722–736 (2007)

9. Ramasubramanian, P., Kannan, A.: Quickprop Neural Network Ensemble Forecasting a
Database Intrusion Prediction System. Neural Information Processing 5, 847–852 (2004)

10. Huang, Y., Huang, S., Lin, T., Tsai, C.: Web application security assessment by fault in-
jection and behavior monitoring, pp. 148–159. ACM, New York (2003)

11. Rietta, F.: Application layer intrusion detection for SQL injection. In: 44th annual South-
east regional conference, pp. 531–536. ACM, New York (2006)

12. Skaruz, J., Seredynski, F.: Recurrent neural networks towards detection of SQL attacks. In:
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007, pp. 1–8. IEEE Inter-
national, Los Alamitos (2007)

13. Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M., Botti, V.: Hybrid multi-agent architec-
ture as a real-time problem-solving model. Expert System with Application 34, 2–17
(2008)

14. Kussul, N., Shelestov, A., Sidorenko, A., Skakun, S., Veremeenko, Y.: Intelligent multi-
agent information security system, Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications. In: Proceedings of the Second IEEE International
Workshop, pp. 120–122 (2003)

15. Abraham, A., Jain, R., Thomas, J., Han, S.Y.: D-SCIDS: distributed soft computing intru-
sion detection system. J. Netw. Comput. Appl. 30, 81–98 (2007)

16. Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: Improving Healthcare Delivery in Geriat-
ric Residences. Intelligent Systems 23, 19–25 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

