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Abstract. A challenging task in time series microarray data analysis is
to identify co-expressed groups of genes from a large input space. The
overall objective of this study is to obtain knowledge about the most
important genes and clusters related to production and growth rate in a
real-world microarray data analysis task. Various measures are engaged
to evaluate the importance of each gene and to group genes based on their
correlation with the output and each other. Some strategies for grouping
and selecting genes are integrated resulting in several models tested for
real biological data. All proposed models are tested on a real microarray
data analysis problem and the results obtained are throughtly presented
as well as interpreted from a biological perspective.

1 Introduction

Microarray data analysis (MDA) deals with a large number of features (genes)
and needs efficient tools and techniques for the identification and classification
of information [1–3]. The number of samples usually available is very low mainly
due to the cost associated. This issue combined with the high dimensionality
of the feature space make the task of extracting significant knowledge from mi-
croarray data an extremely difficult one. Time course (TC) microarray analysis
[4–7] aims to find the best gene subset that promotes a certain variable or event
when subsequent samples are taken from the same biological data at a certain
time rate.

In TC MDA, the overall objective is to provide groups of genes meaning-
fully correlated and a ranking for each group in some well specified conditions.
This paper focuses on a particular TC MDA problem with some specific require-
ments received from the biological experts. The input data consists of time series
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samples which contain the expression levels of 8848 genes of a certain bacteria
measured at 12 time points, each with 3 replicates. Three output values are
available for each sample as follows: (i) the production - a real value indicating
a production level in the studied bacteria, (ii) the production growth - a boolean
value indicating if production is produced or not in the current sample, and (iii)
the growth rate - a real value representing the level of growth in the bacteria.
The objective of the problem is to select and group those genes which are the
most relevant and related with the changes in the production and growth.

A related problem is that of gene expression classification where each sample
has a corresponding output class and the aim is to find the most relevant subset
of genes able to correctly classify new samples. A typical approach is to apply a
gene selection method in order to reduce dimensionality and then engage a clas-
sifier system to evaluate the accuracy of the classification based on the selected
genes [8–10]. In the MDA problem considered in this paper, the output does not
represent the class label for a sample and the aim is not to classify samples but
rather to group them in a meaningful way.

This paper presents framework for MDA that can be used in the case of
time course (TC) analysis [4–7] with certain restrictions: groups of genes have
to be identified so that genes in the same group are related with each other and
with some production or growth output (corresponding to each sample). The
proposed generic model to address this task includes three main steps as follows:
(i) gene sorting according to some information measures and correlation with
the output, (ii) formation of groups using a Markov Blanket (MB) approach,
and (iii) validation of groups based on rate of change from one time point to
another. Several algorithms result from this model according to the measures
(information based or statistic) used in grouping the genes and the strategy
selected for the validation step. All resulted methods are applied for a real MDA
problem and the experiments performed are discussed.

The paper is structured as follows: information and statistical measures com-
monly used in microarray analysis are briefly reviewed, a model for gene clus-
tering and selection based on infomation theory measures and new proposed
similarity measures are presented, and experiments and results obtained for sev-
eral model variants of the proposed approach are discussed.

2 Relevant Information Measures for Gene Ranking and
Selection

Measures coming from information theory are useful in several fields and often
engaged in feature selection [11]. Let X be a random variable and p(x) the
probability distribution of X. The entropy H(X) = −

∫
p(x) · log(p(x))dx is a

measure of the information the feature supports. Similarly, H(Y |X) denots the
entropy of a feature y provided the feature x.

The mutual information between two features x and y (denoted by I(X,Y ))
is defined by means of their probability distribution, as stated in Eq. 1. Higher
values of the mutual information between two features correspond to higher



Gene Clustering in Time Series Microarray Analysis 3

degrees of relevance between the two features. For our MDA problem, a naive
way to select genes would be to calculate the mututal information between each
gene and the output and then sort them in descending order. However, this
approach would only consider the individual gene contribution and correlation
with output.

I(X,Y ) =

∫ ∫
p(x, y) · log(

p(x, y)

p(x) · p(y)
)dxdy (1)

For feature selection, these measures lack the ability of choosing independent
features, particularly in high dimensional datasets. Let us consider two depen-
dent features: if one of them has a high information measure then the second
one does too. This results in a disadvantage of the above information metrics
that lead to the proposal of other information measures described below.

The Information Correlation Coefficient (ICC) measures how independent
two features are from each other (see Eq. 2). The higher the value the more
relevant the relationship is. This measure is reflexive, symmetric and monotonic.

ICC(X,Y ) =
I(X,Y )

H(Y |X)
(2)

If ICC(X,Y ) = 1 then the two variables X and Y are strictly dependent
whereas a value of 0 indicates that they are completely irrelevant to each other.

The Pearson’s Correlation Coefficient (PCC) measures the correlation be-
tween two features using statistics [12]. Let Y be the output feature and X is a
feature from the input space. Let (x,y) be a pair of values of features X and Y,
respectively. The PCC is calculated using Eq. 3.

PCC(X,Y ) =

∑
(x− x̂) · (y − ŷ)√∑

(x− x̂)2
∑

(y − ŷ)2
(3)

3 Proposed Methods for Gene Clustering and Validation

The model proposed in this paper to approach the given MDA problem is based
on information theory measures engaged to facilitate clustering and a new pro-
posed measure mainly used in cluster validation. Genes are first grouped using
different information and statistical measures in connection with the Markov
blanket concept. In a second phase, groups are validated using a new measure
for evaluating the rate of change in time series.

3.1 Gene Clustering

The formation of gene groups has to take into account the degree of relevance
between each gene and the output as well as similar changes in gene expression
levels in the time series. The phase of gene clustering in the proposed model
addresses this problem with an emphasis on the first objective. The gene-output
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and gene-gene relevant degrees are computed using information correlation mea-
sures. Two such measures are considered in this study as follows: Information
Correlation Coefficient (ICC) and Pearson Correlation Coefficient (PCC).

As described in the previous section, ICC (see Eq. 2) measures the relevance
between two variables based on mutual information and joint entropy. ICC takes
values between 0 and 1. The higher the ICC value the more relevant the rela-
tionship between the two variables is. For instance, if ICC(X,Y) = 1 then X and
Y are strictly dependant and relevant. A correlation degree can be expressed by
stating that X is relevant to Y with degree ICC(X,Y).

On the other hand, PCC (see Eq. 3) is a statistical measure of the strength
of the association between the two variables. PCC values range from -1 to +1.
Positive correlation indicates that both variables increase or decrease together,
whereas negative correlation indicates that as one variable increases the other
decreases (and viceversa).

The basic procedure for gene clustering follows some ideas described in [8]. An
ensemble gene selection by grouping (EGSG) method has been proposed in [8]
for classification tasks in MDA. In the EGSG method, genes are first clustered
by approximate MB and then ensemble classifiers applied. In this study, we
adapt the first step from EGSG in order to group similar genes based on the
correlation with the production and growth output. Furthermore, clusters are
validated continously during their formation using a newly introduced rate of
change measure (detailed in the next subsection).

In the clustering phase, genes are first ranked according to the Correlation
Measure (CM) with the output. Both ICC and PCC are considered as CM in
different combinations for experiments. Groups of genes are formed starting from
the highest-ranked gene so that genes in each group are correlated with each
other and with the output based on the MB (Markov Blanket) strategy. The
CM is used in determining if one gene is the approximate MB of another gene.
The first gene added to a group is called the center of that group. A new gene g
is accepted in an existing group if the center of the group is the approximate MB
of g (otherwise, gene g forms a new group becoming the center of that group).
The number of groups emerges from this schema and does not have to be a-priori
known.

The main steps of the gene clustering phase are as follows:

A. For each gene gi, i = 1 . . .M calculate CM(gi, y) based on the formula of
ICC (Eq. 2) / PCC (Eq. 3).

B. Sort the gene set according to the calculated CM value (starting with the
highest value, meaning the most relevant genes to the output y are first in
the list). Let S be the sorted gene set.

C. Initialize the number of groups k = 1. Initialize the first group Gk with the
top ranked gene from S: Gk = {S[1]}.

D. For each gene gi, i = 2 . . .M do
– D.1. Grouping phase:
– – D.1.1 If none of the centers of any group is the approximate MB of gene
gi then create a new group for gi: k = k + 1; Gk = {gi}.
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– – D.1.2 If there is a group Gh such that Gh[1] is the approximate MB of
gene gi then add gi to group Gh: Gh = Gh ∪ {gi}.
– D.2. Validation phase: Check if the membership of gene gi to the chosen
group is validated from a rate of change similarity perspective. The strategy
used for validation is detailed in the next subsection.

E. The final number of groups is k and the resulting groups are G1 . . . Gk.

The first phase results in k groups of genes clustered based on the correlation
with the production output and each other.

3.2 Validation of Clusters

After a gene is added to an existing cluster (grouping phase - step D.1 described
in the previous subsection), the updated cluster is validated by checking if the
new gene has the same dynamics with the genes already present in the group
(step D.2 - validation phase). If the new gene does not actually fit with the
cluster then it is moved to a special group of ’unclustered’ genes (denoted by
G0).

The Rate of Change Similarity (RCS) measure is proposed to evaluate the
similarity of the dynamics between two genes. RCS is defined as the number of
significant changes that co-occur in two gene expression profiles. A percentage
of the gene span is considered as a parameter to assess if a change is significant
or not.

Let the span of a gene or of the output (production or growth) be the full
extend of the variable, that is, the difference between its maximum and minimum
values. Let τ be the parameter indicating a predefined percentage of the span. A
significant change of a variable a (denoted by φi(a) at sample i in the dataset) is
considered to occur when the difference of two consecutive values of that variable
is higher than the product τ · span (see Eq. 4). Then, given two variables a and
b, the RCS is calculated as stated in Eq. 5.

φi(a) =

{
1, |ai − ai−1| > τ · span(a)
0, otherwise

(4)

RCS(a, b) =

∑N
i=2 φi(a) ·maxj∈{i−1,i,i+1}φj(b)∑N

i=2 φi(a)
(5)

It should be noted that i = 2 or i = N represent special situations for Eq.
5. In these extreme situations, the strategy for finding a maximum φ value for
the second variable b has to be changed from considering three possible rates of
change to the only two actually available. In this way, when i = 2 the second
term in the sum is maxj∈{i,i+1}φj(b) while for i = N the maxj∈{i−1,i}φj(b) is
considered.

The online validation phase (carried out once a gene is selected to be added
to an existing cluster) determines if the new gene has a similar RCS to the
output as the most representative gene in the cluster and further between each
other. A parameter called δ is used to decide if the RCS for two different pairs
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of genes (x1, y1) and (x2, y2) is similar. If |RCS(x1, y1)−RCS(x2, y2)| < δ then
they are considered similar. The validation phase checks the difference between
the RCS of the center of group and the output with both RCS of the new gene
and the center of group and the RCS of the new gene and the output. As already
mentioned, if the new gene does not pass the validation step, it is added to a
special group G0 of unclustered genes.

The clustering and validation phase results in k meaningful groups of genes
as well as a special group G0 which contains those genes that have no similarity
to any cluster.

3.3 Summary of Proposed Methods

Several variants of the proposed model can be specified according to different
measures chosen for clustering and validation phases. In order to allow an ex-
tensive analysis, we have selected three different model variants with or without
validation and based on ICC, PCC or RCS in different combinations.

The following variants of the model have been selected for the study pre-
sented here: (i) ICC MB - genes are sorted and MB clustered based on ICC, (ii)
ICC MB PCC - genes are sorted and MB clustered based on ICC; validation
of clusters is based on PCC, and (iii) ICC MB RCS - genes are sorted and MB
clustered based on ICC; validation of clusters is based on RCS.

4 Computational Experiments

The dataset consists of 36 (3x12) samples and 8848 genes. A normalization and
an optional discretization step was applied to the dataset. Some experiments
use a discretization phase for the data which is applied after normalization. This
phase means that the gene expression values are discretized so that insignificant
changes are ignored. For this discretization phase, a parameter called d step is
used to decide a significant change.

4.1 Normalization

The normalization process was performed with the limma package [13]. Median
and none background correction methods were applied for all results reported
in this paper. Method none computes M and A values without normalization so
the corrected intensities are equal to foreground intensities. On the other hand,
method median substracts the weighted median of background intensities from
the M-values for each microarray.

4.2 Experiments Setup

Experiments consider the input dataset as follows: the mean value of the 3 sam-
ples at each time point providing a dataset of 12 samples with 12 set of outputs
(called Mean12 ). With each resulted dataset, the correlation with one of the
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three available outputs i.e. the production growth output (Bool), the produc-
tion rate (RealProd) and the growth output (RealGrowth) can be considered in
the experiments.

Therefore, experiments and results are grouped in the following categories:
Mean12 Bool, Mean12 RealProd and Mean12 RealGrowth. For each experiment
category, all three model variants described in the previous section (i.e. ICC MB,
ICC MB PCC and ICC MB RCS ) have been applied and the obtained results
are discussed in the following subsections.

The possible parameters in each method include d step (used in the dis-
cretization phase), τ and δ (both used in the validation phase). Based on many
experiments performed and the results obtained, we selected the following values
for each parameter to discuss the results in this paper: d step ∈ {0, 0.001, 0.01, 0.1}
(d step = 0 corresponds to no discretization), τ ∈ {0.01, 0.1, 0.5} and δ ∈
{0.005, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9}.

4.3 Results

Considering the mean value over 3 replicas and the boolean production output,
ICC MB groups all genes in the same cluster except when discretization with
step 0.1 is used in which case two clusters are obtained: one with 8830 genes and
the second one with 18 genes. ICC MB PCC and ICC MB RCS further produce
a group G0 for which the size depends on the δ value.

The results obtained considering the real value of production as output are
overall better compared to those obtained for the production growth boolean
value.

Without discretization, ICC MB puts all the genes in the same group (sim-
ilarly with ICC MB for Mean12 Bool). However, when d step = 0.1, ICC MB
reports 7 clusters where majority of genes is in the first cluster and the other
6 groups are formed by fewer genes. The result is still poor as the size of one
group is too large compared to the rest. This is emphasized by the validation
phase (particularly of ICC MB RCS) which results in a group G0 containing
many uncorrectly clustered genes from the big size cluster.

To be more specific, ICC MB PCC produces a G0 group which contains from
0 to 8604 genes depending on the value of δ. Again, for d step = 0.1 best results
are obtained: 7 clusters and G0 with 1590 genes.

ICC MB RCS also gives up to 7 clusters depending on parameters τ and
δ used in the RCS measure and the cluster validation. Furthemore, the dis-
cretization step highly influences the results. When no discretization is used, all
genes go in one cluster and the size of G0 increases with lower values of δ. For
discretization step lower than 0.1, two clusters are formed: one with very high
number of genes (from 8837 to 8754) and the other with very low number of
genes (from 11 to 94). For d step = 0.1 genes are grouped in 7 clusters and a G0

group for which the size depends on δ (see Table 1).

From Table 1, it can be seen that for δ = 0.005 the size of G0 is rather large
at over 7500 genes whereas at δ 0.5 and 0.9 all clusters are validated by RCS
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Table 1. ICC MB RCS (d step = 0.1) results for Mean12 RealProd with different τ
and δ values.

τ δ Clusters G0

G1 G2 G3 G4 G5 G6 G7

0.01 0.005 941 14 110 5 1 17 8 7752

0.01 0.1 4361 16 357 5 1 17 8 4083

0.01 0.5 8207 215 395 5 1 17 8 0

0.1 0.005 1130 73 97 1 1 5 8 7533

0.1 0.1 6832 195 273 5 1 7 8 1527

0.1 0.9 8207 215 395 5 1 17 8 0

regardless the value of τ . The most balanced results are obtained for τ = 0.01
and δ = 0.1.

Considering the relation of gene values with the growth value output results
in more clusters of genes in all methods compared to the Mean12 RealProd
where the real production value was considered.

Without discretization, ICC MB puts all the genes in the same group (same
as for Mean12 RealProd). When d step = 0.1, ICC MB reports 31 clusters (as
opposed to 7 clusters for Mean12 RealProd). The majority of genes go in the
first cluster and the other groups are formed by fewer genes (similar behavior
with ICC MB for Mean12 RealProd).

ICC MB PCC obtains similar results with ICC MB except that it also pro-
duces the G0 group which contains from 0 to 8584 genes depending on the value
of δ. Again, for d step = 0.1 best results seem to be obtained: 31 clusters and
G0 with 631 genes at δ = 0.25.

ICC MB RCS reports 1 to 31 clusters depending more on the discretization
step rather than on the τ parameter (used in the RCS measure) and δ (used
in the cluster validation). When no discretization is used, all genes go in one
cluster. For discretization step of 0.0001, three clusters are formed: one with very
high number of genes (8846) and the other two groups with one gene each. For
discretization step of 0.01, 12 clusters are formed: one with very high number of
genes (8818) and the other 11 groups having 1 to 8 genes each. For discretization
step of 0.1, 31 clusters are formed: one with high number of genes (7731) and
the other 30 groups having among 1 and 317 genes each.

4.4 Discussion and Biological Perspective on the Results

Experiments have shown that the model variant ICC MB is not able to provide
any clustering in most scenarios considered. The inclusion of a validation phase
(based on either RCS or PCC) is crucial in obtaining a more reliable clustering
result starting from ICC MB. Figure 1 emphasizes the different results obtained
by ICC MB compared to the ICC MB PCC where a validation phase is included
and also the difference in results between a validation based on PCC and the
other based on RCS. A triangular matrix is created as follows: for each pair
of genes (gi, gj) associate value 0 (corresponding to white color) if none of the
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two methods grouped genes gi and gj together, value 0.5 (corresponding to grey
color) if only one of the methods put the two genes in the same group and a
value of 1 (corresponding to black color) if both methods produced the same
grouping result. Clearly, the RCS provides different kind of groups by checking
the rate of change in the gene expression values.

Fig. 1. Comparison of model variants with and without validation: (left) ICC MB vs.
ICC MB PCC, and (right) ICC MB RCS vs ICC MB PCC.

Although the computational results are encouraging, their biological utility
is limited due to the big size of resulting groups and the lack of co-expression be-
tween the genes of each group. It is known that functionally related genes tend to
have similar expression values [14] and hence, the possibility of obtaining groups
with a common expression profile is of great interest because it enhances the bio-
logical significance. However, it is important to emphasize that gene ranking and
selection measures help to identify genes that are involved in the production and
growth processes. Therefore, the combination of co-expression and gene ranking
approaches could be beneficial because (i) the size of groups is reduced based on a
co-expression measure, (ii) genes are ranked based on the growth and production
values and (iii) the biological significance is improved based on the assumption
in which related biological processes have similar expression patterns.

5 Conclusions and Future Work

The task of gene clustering and selection in connection with a real-world time
series microarray problem has been investigated. Several methods based on in-
formation theory methods are developed and analysed. Experiments show a poor
performance of measures such as ICC in the ability to meaningfully cluster the
genes in the considered dataset. However, the importance of validation by simi-
larity measures is clearly emphasized through the comparisons performed.

Future work focuses on development and investigation of methods able to
provide gene groups based on the distance between gene expression levels and
the correlation with the output.
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