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a b s t r a c t 

Performing a Random Projection from the feature space associated to a kernel function may be impor- 

tant for two main reasons. (1) As a consequence of the Johnson–Lindestrauss lemma, the resulting low- 

dimensional representation will preserve most of the structure of data in the kernel feature space and (2) 

an efficient linear classifier trained on transformed data might approximate the accuracy of its nonlinear 

counterparts. In this paper, we present a novel method to perform Random Projections from the feature 

space of homogeneous polynomial kernels. As opposed to other kernelized Random Projection propos- 

als, our method focuses on a specific kernel family to preserve some of the beneficial properties of the 

original Random Projection algorithm (e.g. data independence and efficiency). Our extensive experimental 

results evidence that the proposed method efficiently approximates a Random Projection from the kernel 

feature space, preserving pairwise distances and enabling a boost on linear classification accuracies. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The Random Projection method [1] is an extremely simple and

widely used linear dimensionality reduction method [2–5] . As op-

posed to other approaches, Random Projection computes the pro-

jection matrix from a random distribution, thus being a data-

independent method. In spite of its simplicity, Random Projec-

tion has strong theoretical foundations. The main theoretical ba-

sis that underpins Random Projection is the Johnson–Lindestrauss

(JL) lemma, which states that a small set of points in a high-

dimensional space can be embedded into a space of much lower

dimension in such a way that distances between the points are

nearly preserved. Formally, for any 0 < ε < 1 and x 1 , x 2 , . . . , x n ∈ R 

d 

there is a map f : R 

d → R 

k for k = O(ε−2 log (n )) such that: 

(1 − ε) || x i − x j || 2 � 

|| f (x i ) − f (x j ) || 2 � (1)

(1 + ε) || x i − x j || 2 ∀ i, j 

Furthermore, this map can be found in randomized polynomial

time. 1 In the original version of the algorithm, the map f consisted

of projecting the points from R 

d to R 

k by means of a d × k projec-

tion matrix, whose elements were drawn from a standard normal
∗ Corresponding author. 

E-mail address: lope@usal.es (D. López-Sánchez). 
1 A particularly simple proof of this lemma was introduced in [6] . 
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istribution. Once the d × k matrix R had been populated, an ar-

itrary set of n points represented as an n × d matrix X could be

rojected from R 

d to R 

k according to Eq. (2) . 

 

′ 
n ×k = 

1 √ 

k 
X n ×d R d×k (2)

owever, Achlioptas showed that the projection matrix can instead

e drawn from a much simpler distribution [7] . Specifically, he

howed that if the projection matrix is drawn from the distribution

efined by Eq. (3) (where he used s = 1 , 3 ), then the JL-lemma will

e satisfied [8] . 

 i j = 

√ 

s 

{ 

1 with prob. 1 / 2 s 
0 with prob. 1 − 1 /s 
−1 with prob. 1 / 2 s 

(3)

oreover, Achlioptas proved that as long as the elements of the

rojection matrix are independent and identically distributed ran-

om variables with zero mean and unit variance, pairwise dis-

ances will be approximately preserved. Using the distribution

roposed by Achlioptas reduces the computational cost of the pro-

ection. In fact, if the multiplication by 
√ 

s present in Eq. (3) is de-

ayed, the computation of the projection itself reduces to aggregate

valuation (i.e. summation and subtraction but no multiplication),

hich can be efficiently performed in database environments using

tandard SQL primitives. 

More recently, a non-linear variant of the Random Projection

lgorithm has been proposed in the literature [9,10] . In this con-

https://doi.org/10.1016/j.patcog.2018.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.05.003&domain=pdf
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ext, the authors try to perform a Random Projection from an ex-

ended non-linear feature space. Specifically, their method is able

o perform a Random Projection from the feature space 2 of an ar-

itrary kernel function. This can be of interest because (1) the

ow-dimensional projected points preserve most of the structure

rom the kernel feature-space and (2) after the random projec-

ion, a classification problem may become more linearly solvable,

nd the classification accuracy of scalable linear classifiers may

ncrease. In spite of being compatible with any kernel function,

his kernelized version of Random Projection sacrificed some of

he advantages of the original Random Projection method, namely

ata-independence and computational efficiency. In addition, it is

nclear whether this algorithm is compatible with the database-

riendly distribution proposed by Achlioptas. 

In this paper, we propose an novel method to efficiently per-

orm Random Projections from the feature space of homogeneous

olynomial kernels of arbitrary degree. By focusing specifically on

he family of homogeneous polynomial kernels, our approach man-

ges to preserve the data-independence and efficiency of the origi-

al Random Projection method, as compared to previous Kerneliza-

ion attempts which work with arbitrary kernels but sacrifice these

eneficial properties [9,10] . Although less popular than the Radial

asis Function kernel (RBF), polynomial kernels have been found to

e very effective in some cases [11,12] . In essence, the method pro-

osed in this paper can be used to efficiently capture the structure

f data in the feature-space of homogeneous polynomial kernels,

ondensing this information in a low-dimensional representation

f data. In addition, our method is compatible with the database-

riendly distribution proposed by Achlioptas. Our experimental re-

ults evidence that the proposed method outperforms alternative

pproaches in terms of pairwise-distance preservation, while re-

uiring significantly less computational resources. We also present

esults evidencing that the generated feature representations can

e used for a higher linear classification accuracy, approximating

he effectiveness of nonlinear classifiers in some datasets. 

The rest of this manuscript is structured as follows.

ection 2 reviews some of the most prominent works that

tudy the possible kernelization of the Random Projection tech-

ique. Section 3 introduces our proposed algorithm and analyzes

ts compatibility with the database-friendly distribution proposed

y Achlioptas. It also contains a detailed analysis of the com-

utational complexity of our algorithm and other alternative

pproaches. Section 4 compiles the results of an extensive em-

irical, which evidences the properties of our kernelized variant

f Random Projection. Finally, in Section 5 we present the con-

lusions of this work and propose some promising future lines of

esearch. 

. Related work 

As previously said, the problem of developing a kernelized vari-

nt of the original Random Projection algorithm has already been

ddressed in the literature. The interest in this attempt is moti-

ated by two main reasons: 

1. A kernelized variant of the Random Projection algorithm would

provide a means to generate low dimensional representations

where relative distances between data points would be approx-

imately equal to those in the kernel feature space. This could

have applications in tasks such as clustering and information

retrieval. 
2 In the context of kernel functions, the term feature space refers to the Hilbert 

pace H associated to a given positive definite kernel function such that K(x, y ) = 

 φ(x ) , φ(y ) 〉 H . 

p  

k  

d

2. The question of whether Random Projections preserve inner

products has recently been an object of controversy [13] . How-

ever, it has been shown that angles between data samples

and separability margins are approximately preserved after a

Random Projection [14] . As a consequence, an efficient tech-

nique which performs a Random Projection from kernel feature

spaces could be used as a representation generator to learn a

linear classifier. Such linear classifier would benefit from the

non-linearity of the feature space and approximate the accuracy

of non-linear classifiers, while being significantly more efficient

in both training and test stages [15] . 

Motivated by these possibilities, the authors of [14,16] analyzed

hether it would be possible to formulate an algorithm capable of

erforming a Random Projection from the feature space of an ar-

itrary kernel function, by just having black-box access to the ker-

el function but no unlabeled training samples (i.e. without access

o the distribution of input data). Unfortunately, their results were

egative, and the authors proved that this is not possible for an

rbitrary black-box kernel. However, they left the question open of

hether such methods could be developed for specific kernel func-

ions such as the polynomial kernel. 

Years later, Alavi et al. [9] and Zhao et al. [10] proposed a gen-

ral method to perform Random Projections from arbitrary ker-

el feature spaces. Their findings did not contradict the result de-

cribed in the previous paragraph since the method they proposed

equired access to a number of unlabeled training samples to work.

nterestingly, their algorithm was based on an approach developed

o solve a different problem, namely the Kulis–Grauman approach

17] . This technique, originally developed to perform a kernelized

ariant of Locally Sensitive Hashing, can be used to generate a set

f nearly Gaussian hyperplanes in an arbitrary kernel implicit fea-

ure space, without any computation of the explicit embedding

: R 

d → H. Despite its success, this approach has a major draw-

ack inherent to its core idea: the approximately Gaussian hyper-

lanes in the implicit kernel space are built as a weighted sum

f a subset of the database items, thus making the method data-

ependent. On their side, the authors of [9,10] showed how, with

inimal modifications, the Kulis–Grauman approach can be used

o perform a Random Projection from an arbitrary kernel’s fea-

ure space. From now on we will refer to this kernelized variant

s the Kulis–Grauman Random Projection (KG-RP). As previously

xplained, KG-RP is a data-dependent method. As a consequence,

he quality of the embeddings it produces depends on the amount

f data available and its variability. In addition, most of the com-

utational efficiency of the original Random Projection method is

ost in this version. For example, the training phase in the original

ethod only involves the population of a projection matrix from

 random distribution. Unfortunately, the training phase in KG-RP

ntails expensive computations over training samples 3 

Following a diametrically opposite approach, Chang et al. pro-

osed explicitly computing the feature map of low-rank polyno-

ial kernels and using these to train efficient linear classifiers

11] . They exploited the fact that, as opposed to other popular ker-

el functions, the feature space associated to polynomial kernels

s known and of finite dimension. They also took advantage of

he sparse nature of some datasets to reduce the time and stor-

ge requirements of explicitly computing the kernel feature-map.

lthough their results evidenced the potential of polynomial ker-

els, this approach is prohibitively demanding in terms of stor-

ge and computation. This is especially true when working with

olynomial degrees greater than two, as in the case of polynomial

ernels the dimension of the feature space grows exponentially
3 The computational complexities of alternative methods are analyzed in more 

etail in Section 3.4 . 
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Fig. 1. Visualization of (a) A digit from MNIST in the feature space of the homo- 

geneous polynomial kernel of degree two, and (b) The weights learned by a simple 

gradient descent linear classifier on that feature space. Positive weights are depicted 

in red and negative weights in blue. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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4 http://yann.lecun.com/exdb/mnist/ . 
with the degree. More recent work on low-degree polynomial ker-

nel approximation has shown that rather than explicitly comput-

ing the explicit feature space, it is possible to implicitly perform

a Random Projection from it. Particularly, a data-independent al-

gorithm named P-RP has recently been proposed to perform Ran-

dom Projections from the feature space of degree-two homoge-

neous polynomial kernels [18] . Unfortunately, the applicability of

this method is severely limited by the exclusive compatibility with

the second degree homogeneous polynomial kernel. In addition, it

requires populating a number of complete Random Projection ma-

trices, thus incurring in significant computational overheads. Fur-

thermore, this method is outperformed in most of the experiments

presented in Section 4 , while being almost one order of magnitude

slower than the method presented in this paper. 

Finally, it is worth noticing that during the past decade a lot

of effort has been put into designing methods to efficiently ap-

proximate different kernels’ feature spaces. Formally, given a ker-

nel function K ( · , · ), the goal of such methods is to find an ap-

proximated feature map h ( · ) such that: 

K(x, y ) = 〈 φ(x ) , φ(y ) 〉 H 

≈ 〈 h (x ) , h (y ) 〉 
R k 

(4)

where h ( · ) can be computed efficiently and the feature space it

generates is sufficiently low-dimensional or sparse [19] . The main

motivation behind this effort is that, while Support Vector Ma-

chines (SVM) using the kernel trick scale poorly [20] , linear SVMs

can be learned in linear time with respect to the number of sam-

ples available at training time [21] . As a consequence, approximate

kernel feature spaces can serve as a basis for training efficient lin-

ear SVMs which achieve accuracy rates similar to those of their

kernelized counterparts. Note that these methods are designed to

approximate dot-products between samples rather than Euclidean

distances (i.e. they are not directly related to Random Projection

or the JL-lemma). Nevertheless, we chose one of the most popular

and generally applicable methods of this class, namely the Nyström

method [22] and included it in our experimental comparisons. 

3. Kernelized Random Projection with homogeneous 

polynomial kernels 

In this section, we introduce the proposed method and provide

a simple pseudo-code description to ease its implementation and

increase the reproducibility of our results. Afterwards, the com-

patibility of our technique with the database-friendly distribution

proposed by Achlioptas [7] is explored. Finally, the computational

complexity of our algorithm is analyzed in both train and test

phases, and compared to alternative approaches. 

3.1. Homogeneous polynomial kernels 

As outlined before, our method is specifically designed to effi-

ciently perform Random Projections from the feature space of ho-

mogeneous polynomial kernels. We focused on this family of ker-

nel functions due to their simplicity, proven power [11] and special

properties, which will allow us to perform the Random Projection

efficiently and without any knowledge of the distribution of data

to be projected. Formally, polynomial kernels are computed as fol-

lows: 

K(x, y ) = (〈 x, y 〉 + c) g (5)

Homogeneous polynomial kernels are uniquely those polynomial

kernels with c = 0 . Given that homogeneous polynomial kernels

are positive-definite, there is a feature map φ : R 

d → H such that:

K(x, y ) = 〈 x, y 〉 g = 〈 φ(x ) , φ(y ) 〉 H 

(6)

In fact, in the case of homogeneous polynomial kernels the map-

ping function φ( · ) is known and produces a finite-dimensional
epresentation [23] . Formally, the feature space associated to the

olynomial kernel of dimension g is computed as follows: 

(x ) = 

g ⊗ 

i =1 

x (7)

here � denotes the Kronecker product. For example, if g = 2 and

 ∈ R 

d , then: 

g=2 (x ) = x � x 

= [ x 1 x 1 , · · · , x 1 x d , x 2 x 1 , · · · , x d x d ] ∈ H 

he intuition behind this kernel family is that it is often useful to

onstruct new features as the product of original features. Note

hat the polynomial degree g in Eq. (7) determines the order of

onomials composing the feature space. To provide some intu-

tion on the nature of homogeneous polynomial kernels, we gen-

rated the explicit feature-space representation for a number of

4 × 14 resized digit images from the MNIST dataset. 4 Then, a sim-

le gradient-descent linear classifier was trained on them to dis-

inguish the digit “3” from all the others: 

 = tanh (〈 φ(x ) , w 〉 + b) (8)

ig. 1 shows one of those samples in the kernel feature space and

he weight vector learned by the linear classifier. As we can see, it

ses different “templates” to emit a prediction, depending on the

resence/absence of intensity in the different regions of the origi-

al digit image. This exemplifies how linear classification can ben-

fit form polynomial features as they allow them to account for

nteractions between features. 

Unfortunately, the dimension of φ(x ) ∈ H grows exponentially

ith the polynomial degree. In particular, the dimension of the

eature space H for the g -dimensional homogeneous polynomial

ernel is d g . As a consequence, any algorithm using the explicit

eature space of homogeneous polynomial kernels will rapidly be-

ome intractable as the original dimension of samples d or the

olynomial degree g grow. 

.2. Kernelized Random Projection algorithm 

Our goal is to perform a Random Projection form the kernel

eature space H onto a lower-dimensional Euclidean space R 

k ,

hile avoiding any explicit computation of the feature-mapping

( · ). In this regard, each output component must be generated as

he inner product between the mapped data point and a random

yperplane whose elements are drawn from a valid JL-distribution

e.g., a standard normal distribution): 

 

φ(x ) , r 〉 H 

where r ∼ N (0 , I) (9)

http://yann.lecun.com/exdb/mnist/
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Fig. 2. Covariance matrices computed over 500 d 2 -dimensional samples generated by (a) directly sampling N d 2 (0 , I) , (b) computing 
⊗ 2 

i =1 r i where r i ∼ N d (0 , I) to generate 

each sample and (c) computing 
∑ t 

j=1 

⊗ 2 
i =1 r i j where r i j ∼ N d (0 , I) to generate each sample. In this case d was set to 5. 

Fig. 3. Distance-correlation matrices [26] computed over 500 d 2 -dimensional samples generated by (a) directly sampling N d 2 (0 , I) , (b) computing 
⊗ 2 

i =1 r i where r i ∼ N d (0 , I) 

to generate each sample and (c) computing 
∑ t 

j=1 

⊗ 2 
i =1 r i j where r i j ∼ N d (0 , I) to generate each sample. In this case d was set to 5. 
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o achieve this, our method uses the following property of homo-

eneous polynomial kernels 5 : 

g 
 

i =1 

〈 x, r i 〉 R d = 〈 φ(x ) , r′〉 H 

(10) 

where r′ = 

⊗ g 
i =1 

r i 

f r 1 , ���, r g are drawn from N (0 , I) , the elements of r ′ will follow

 symmetric distribution with zero mean and unit variance (the

ormal product distribution [24,25] in particular). As mentioned

efore, a necessary condition for a given projection hyperplane to

atisfy the JL-lemma is that its elements must be independently

rawn from a distribution with zero mean and unit variance. When

nalyzed individually, the elements of r ′ exhibit the desired zero

ean and unit variance. However, due to the manner in which

hey are computed, they are not strictly independent. As a con-

equence, we cannot ensure that Eq. (10) performs a valid Random

rojection. 

To provide insight into the dependence of features in r ′ , we

enerated a number of such random hyperplanes by explicitly

omputing r′ = 

⊗ g 
i =1 

r i . To keep the computations tractable, we

onsidered a polynomial degree of two ( g = 2 ) and an input fea-

ure space of dimension 5 ( r i ∼ N 5 (0 , I) ). Hence, the dimension of

he hyperplanes generated in this manner was 25. For compari-

on, we also generated a set of random hyperplanes by directly

ampling N 25 (0 , I) . Fig. 2 (a) and (b) show the covariance matrices

or the hyperplanes generated by either method. Interestingly, co-

ariance matrices of both sets of hyperplanes look quite similar.

his suggest that the dependence between the features of hyper-

lanes generated by means of Eq. (10) is not a mere linear cor-

elation. To actually visualize this phenomenon, we need to use

 more sophisticated measure of statistical dependence, namely

he correlation-distance 6 [26] . Fig. 3 (a) and (b) show the distance-

orrelation matrices for the random hyperplanes generated by di-

ectly sampling N 25 (0 , I) and using r′ = 

⊗ g 
i =1 

r i respectively. In this
5 Note that, although r′ ∈ H, an r such that φ(r) = r′ does not exist in most cases. 
6 Distance-correlation is a statistical measure of dependence between random 

ariables. As opposed to Pearson’s correlation coefficient, distance-correlation takes 

 value of zero if and only if the variables are statistically independent. 

p  

f  

o  

a  

f  

v  
ase, the matrix corresponding to the hyperplanes generated by

sing r′ = 

⊗ g 
i =1 

r i shows a clear non-random deviation with re-

pect to the identity matrix. This indicates that, as expected, a cer-

ain degree of dependence exists among features. 

Our proposed method applies the Central Limit Theorem (CLT)

27] to overcome the problem of feature dependence in projec-

ion hyperplanes. This classical result states that the sum of in-

ependent random variables with finite, non-null variance is ap-

roximately distributed according to a normal distribution. In this

egard, our method will compute the projection hyperplanes as

he sum of a set of t random hyperplanes generated according to

q. (10) . Formally, the final projection hyperplanes will take the

orm of: 

t 
 

i =1 

( 

1 √ 

t 

g ⊗ 

j=1 

r i, j 

) 

where r i, j ∼ N d (0 , I) (11)

pplying the CLT we can ensure that, for a sufficiently large t

alue, these hyperplanes will be approximately normal with zero

ean and unit variance. Note that a correction factor of 1 / 
√ 

t was

ntroduced to obtain the desired unit variance. Again, we explic-

tly generated a number of such projection hyperplanes to empir-

cally asses the independence of their features (note that the fi-

al version of the algorithm will never compute these hyperplanes

xplicitly). Figs. 2 (c) and 3 (c) show the covariance and distance-

orrelation matrices of the generated hyperplanes. As desired, the

istance-correlation matrix approximates the identity except for

ome random noise. This indicates that the use of the CLT effi-

iently mitigated the dependence among the elements of the pro-

ection hyperplanes. As a consequence, these random hyperplanes

re valid for performing a Random Projection, ensuring that the

L-lemma will be satisfied. 

At this point, we can present how our proposed method com-

utes each component of the k -dimensional output representation

or a given data point x ∈ R 

d . For computational reasons, instead

f creating gtk unique random hyperplanes, our method generates

 set of p hyperplanes and uses random subsets sampled from it

or each output component. Formally, let S be a set of p random

ectors drawn from N (0 , I) . Then, for each output component we
d 
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Algorithm 1 Kernelized Random Projection for homogeneous 

polynomial kernels. 

Require: A set of points { x 1 , · · · , x N } from R 

d , the desired degree 

g for the polynomial kernel, the total number of hyperplanes p, 

the number of hyperplanes t used for each output component 

and the desired output dimension k . 

Ensure: Returns a set of output samples { x ′ 
1 
, · · · , x ′ 

N 
} in R 

k such 

that pairwise distances between these samples are approxi- 

mately equal to those of input data samples mapped on the 

feature space of the homogeneous polynomial kernel of degree 

g. 

1: S ← { r 1 , · · · , r p } where r i ∼ N d (0 , I) 

2: Sample S to form S 1 , · · · , S k ⊂ S, where | S i | = gt 

3: for n = 1; n ≤ N; n++ do 

4: for l = 1; l ≤ k; l++ do 

5: x ′ n [ l] ← 0 

6: for i = 0; i < t; i++ do 

7: temp ← 

1 √ 

t 

8: for j = 1; j ≤ g; j++ do 

9: t emp ← t emp · 〈 x n , S l [ gi + j] 〉 
10: x ′ n [ l] ← x ′ n [ l] + temp 

11: x ′ n [ l] ← 

1 √ 

k 
· x ′ n [ l] 

12: return { x ′ 
1 
, · · · , x ′ 

N 
} 

c
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form S l = { r 1 , · · · , r tg } , a set of t · g vectors chosen at random 

7 from

S (i.e. S l ⊂ S ). Afterwards, the l -th component in the output feature

space is computed as follows: 

f l (x ) = 

〈 

φ(x ) , 
t−1 ∑ 

i =0 

( 

1 √ 

t 

g ⊗ 

j=1 

r gi + j 

) 〉 

H 

(12)

which corresponds to the projection of the mapped data point φ( x )

onto a random hyperplane drawn from a standard normal distribu-

tion. Conveniently, Eq. (12) can be rewritten to avoid any explicit

computation of the feature space or the Kronecker product: 

f l (x ) = 

〈 

φ(x ) , 
t−1 ∑ 

i =0 

( 

1 √ 

t 

g ⊗ 

j=1 

r gi + t 

) 〉 

H 

= 

t−1 ∑ 

i =0 

( 

1 √ 

t 

〈 

φ(x ) , 

g ⊗ 

j=1 

r gi + j 

〉 

H 

) 

= 

t−1 ∑ 

i =0 

( 

1 √ 

t 

g ∏ 

j=1 

〈 x, r gi + j 〉 
) 

(13)

Then, the output representation for a given sample is formed by

concatenating the k components and multiplying them by a scaling

factor (as in [7] ): 

f (x ) = 

1 √ 

k 
[ f 1 (x ) , · · · , f k (x ) ] (14)

In practice, the most effective strategy for transforming a sample

involves pre-computing the projection of that sample over the p

random hyperplanes in S . By so doing, Eq. (13) can be evaluated

without any further projection operation (i.e. with a computational

complexity independent of d ). The computations involved in ini-

tializing and transforming a number of samples with the proposed

method are summarized in Algorithm 1 . 

3.3. Sparse kernelized Random Projections 

Thus far, we have assumed that the projection hyperplanes used

in our method had to be drawn from a standard Gaussian dis-

tribution. However, as mentioned before, the hyperplanes used in

the classical Random Projection algorithm can be drawn from the

much simpler distribution proposed by Achlioptas [7] . When using

this discrete distribution, the projection of data samples over the

projection hyperplanes can be done in terms of aggregate eval-

uation. Also, if the hyperparameter s from Eq. (3) is set to val-

ues greater than one, only a fraction of each sample’s components

need to be evaluated when performing the projection, and fast

sparse-matrix multiplication routines can be applied. 

In this section we show that, surprisingly, the method pre-

sented in the previous section is directly compatible with the

sparse distribution proposed by Achlioptas [7] . Let us consider

Eq. (10) again: we want to analyze the distribution of r ′ when

the random hyperplanes r 1 , · · · , r g ∈ R 

d used in this equation are

drawn from the database-friendly distribution of Eq. (3) . As r′ =⊗ g 
i =1 

r i , its elements are indeed the product of g discrete random

variables drawn from Eq. (3) . As a consequence, the distribution

of the elements in r ′ can be determined using the following prop-

erty of discrete random variables. Formally, given g independent

and identically distributed random variables V 1 , ���, V g with sup-

port V (i.e. the set of realizations that have a strictly positive prob-

ability of being observed), the distribution of P (V 1 · · ·V 2 = c) can be
7 In practice, in order to save storage resources, the subsets S 1 , ���, S k store the 

indexes to the selected hyperplanes of S , rather than duplicated copies of them. 

W  

p  

m  

o  
omputed as follows: 

 (V 1 · · ·V 2 = c) = 

∑ 

v 1 , ··· , v g ∈V 
v 1 ···v g = c 

P (V 1 = v 1 ) · · · P (V g = v g ) (15)

ooking at Eq. (3) we can see that, in our case, the support is V =
−1 , 0 , 1 } , with associated probabilities 1 

2 s , 1 − 1 
s and 

1 
2 s . Applying

q. (15) we get that the elements of r ′ are distributed according to:

′ i = 

√ 

s g 

{ 

1 with prob. 1 / 2 s g 

0 with prob. 1 − 1 /s g 

−1 with prob. 1 / 2 s g 
(16)

hich is a valid JL-distribution according to Achlioptas’ work (sim-

ly substitute s by s g in Eq. (3) ). However, as in the case of using

he normal distribution, the elements in r ′ are not completely in-

ependent of each other. Fortunately, as the above distribution has

 zero mean and unit variance, the CLT can be applied just like in

he Gaussian case. As a consequence, the method proposed in the

revious section is directly compatible with the discrete distribu-

ion proposed by Achlioptas. In fact, one might draw the projec-

ion hyperplanes of Eq. (13) from Achliptas’ distribution and the

esult would still approximate a JL-projection from the kernel fea-

ure space. This claim is also supported by the experimental results

resented in Section 4 . 

To use this sparse variant of the projection hyperplanes with

ur method, it suffices to modify step 1 of Algorithm 1 . Instead of

enerating the projection hyperplanes in S by sampling N d (0 , I) ,

hey can be populated following the sparse distribution described

n Eq. (3) . Formally, step 1 of Algorithm 1 becomes: 

 ← { r 1 , · · · , r p } , where the entries of r i ∈ R 

d are drawn from P

P (R = x ) = 

{ 

1 / 2 s , x = 

√ 

s · 1 

1 − 1 /s , x = 0 

1 / 2 s , x = 

√ 

s · −1 

(17)

here the hyperparameter s controls the sparsity level of the hy-

erplanes. Conveniently, The following steps of the algorithm re-

ain exactly the same. Also note that, apart from the sparseness

f the hyperplanes, a major advantage of Achlioptas’ distribution
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8 In particular, this is performed by using LAPACK’s implementation of SVD (see 

http://www.netlib.org/lapack/ ). 
s the fact that the projection of samples onto the random hy-

erplanes (step 9 of Algorithm 1 ) can be implemented solely in

erms of aggregate evaluation (i.e., summations and subtractions)

y delaying the multiplication by 
√ 

s present in Achlioptas’ distri-

ution. This implementation trick can be an advantage in struc-

ured database environments, as the projections can be imple-

ented with standard SQL primitives. 

.4. Computational complexity analysis 

This section compares the computational complexities of the

ifferent methods both in training and test phases. First, we an-

lyze the computational complexity of the KG-RP method. Most of

he computations involved in this method correspond to the calcu-

ations performed in the Kulis–Grauman approach [17] . However,

he computational complexities reported vary slightly due to dif-

erent optimizations applied. Let us analyze step by step the com-

utations performed by taking the pseudo-code implementation

resented in [10] as reference. In the training stage we have to: 

1. Compute the p × p kernel Gram matrix K S among the p selected

training points. Assuming the kernel computation takes O(d)

for samples in R 

d , this step requires O(dp 2 ) time. 

2. Compute K 

−1 / 2 
S by means of eigendecomposition, which re-

quires O(p 3 ) time. 

3. Form the weight vector for each output component w 1 , ���, w k .

Since each vector is computed as w i = 

√ 

p−1 
t K 

−1 / 2 
S e S , and e S is

a p -dimensional vector, this step has a complexity of O(kp 2 ) . 

By combining the different steps, the obtained complexity of

raining KG-RP is O(dp 2 + p 3 + kp 2 ) . Note that, in the case of KG-

P, p is a hyper-parameter which controls the number of train-

ng samples used to estimate the mean and covariance matrix of

he population in the implicit kernel space. The authors suggest a

euristic rule to select this value, namely using p = O( 
√ 

n ) , where

 is the number of available training samples. Regarding the test

hase, the following computations must be performed to transform

 single sample: 

1. Compute the kernel Gram matrix K between the test sample

and the p points in S . Assuming the kernel computation takes

O(d) for samples in R 

d , this step requires O(pd) operations. 

2. Generate the final representation of the test sample as KW ,

where W = [ w 1 , · · · , w k ] . This can be done at the cost of O(pk )

time. 

Therefore, transforming a single test sample with KG-RP has a

omplexity of O(pd + pk ) . 

Now we analyze the proposed kernelized Random Projection

ersion. The computations needed to initialize/train the algorithm

steps 1–2 from Algorithm 1 ) are the following: 

1. The set S is populated with p random hyperplanes drawn from

N d (0 , I) (or alternativelly using Achlioptas’ distribution as de-

scribed in Section 3.3 ), where d is the dimension of data sam-

ples. This can be done in O(pd) time. 

2. The set S is sampled at random to form S 1 , ���, S k ⊂ S , each with

cardinality gt . This takes O(gtk ) time, where gt < p . 

This shows that the training stage of the proposed method

as a computational complexity of O(pd + gtk ) . To project a test

ample, each output component is computed by using Eq. (12) or

quivalently, executing the steps 3–12 of Algorithm 1 . In any case,

his computation requires a time of O(gtkd) . As mentioned before,

his complexity can be reduced by pre-computing the inner prod-

cts between the test sample and the p hyperplanes in S . By so

oing, the computational complexity of transforming a sample by

eans of the proposed method ends up being O(pd + gtk ) . It is
lso worth comparing the complexity of our method with that of

-RP, presented in [18] . As explained in the original paper, P-RP

ses a number m of d × k projection matrices, and a good approx-

mation of the degree-two homogeneous polynomial kernel can

e achieved by using m = 30 . From the analysis presented in the

riginal paper, populating the projection matrices for P-RP takes

(dmk ) time, and transforming one sample requires O(dmk ) oper-

tions. As evidenced by our experimental results, this multiple pro-

ection matrix approach is highly inefficient, often leading to com-

uting times one order of magnitude higher than our approach,

hile exhibiting an equal or worse performance. Also note that the

omplexity of P-RP is independent of the polynomial degree g , be-

ause this method is only compatible with g = 2 . 

Finally, the Nyström method works by generating a low-rank

pproximation of the kernel matrix by sampling a number of

olumns [22] . Although some alternative sampling methods have

een studied, the original method, where a fixed random distribu-

ion is used to select the columns from the kernel matrix, contin-

es being the fastest and one of the most widely used approaches

28] . For our analysis and experiments, we focus on the standard

yström algorithm as implemented in [29] . The computations in-

olved in training this algorithm are the following: 

1. Compute the k × k reduced kernel Gram matrix W among the

samples corresponding to the k selected columns from the full

kernel matrix. Assuming the kernel computation takes O(d) for

samples in R 

d , this step takes O(k 2 d) . 

2. Compute W 

−1 / 2 by means of Singular Value Decomposition, 8 

which requires O(k 3 ) time. 

In summary, the training stage of Nyström requieres a time of

(dk 2 + k 3 ) . To transform each sample, the following operations

re performed in the test phase: 

1. Compute the kernel Gram matrix K between the test sample

and the k samples selected during training. Assuming the ker-

nel computation takes O(d) for samples in R 

d , this step re-

quires O(dk ) operations. 

2. Generate the output representation for the test sample as

KW 

−1 / 2 . Since W 

−1 / 2 is of size k × k , this can be done in O(k 2 ) .

From the combination of these complexities we obtain that

ransforming a test sample by means of Nyström has as a time

omplexity of O(dk + k 2 ) . 

Our analysis shows that the proposed algorithm exhibits a bet-

er computational complexity than the alternative methods. Con-

erning the training phase, the time required by KG-RP increases as

he cube of p , and also requires p 2 evaluations of the kernel func-

ion. Similarly, Nyström’s training time grows as the cube of k , and

nvolves k 2 kernel evaluations. For its part, our proposed method

as a training time which grows linearly with respect to p and k .

n addition, thanks to its data-independent nature, it requires no

valuation of the kernel function in training time. Our method is

lso very competitive in terms of testing-time complexity. Provided

hat tg < p , the complexity of our method is lower than that of KG-

P. 

The train and test computational complexities of the different

ethods analyzed in this section are summarized in Table 1 . 

. Experimental results 

This section presents extensive experimental results validat-

ng the ability of the proposed method to (1) generate a low-

imensional representation where the distances between points

http://www.netlib.org/lapack/
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Table 1 

Computational complexities of different methods. ( ∗) 

Complexity obtained by pre-computing the inner prod- 

uct between test samples and the p random hyperplanes 

in S . 

Method Train Transform 

Proposed KRP O(pd + gtk ) O(dtgk ) 

Proposed KRP ∗ O(pd + gtk ) O(pd + gtk ) 

KG-RP [9] O(p 2 d + p 3 + kp 2 ) O(pd + pk ) 

Nyström [22] O(dk 2 + k 3 ) O(dk + k 2 ) 

P-RP [18] O(dtk ) O(dtk ) 

φ( · )+RP O(d g k ) O(d g k ) 
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1  
are approximately equal to the pairwise distances in the homoge-

neous polynomial kernel’s feature space; and (2) boost the accu-

racy of linear classifiers by generating a data representation where

linear classifiers can approximate the accuracy of their non-linear

counterparts. 

The methods evaluated are our proposed KRP version, KG-RP

[9] and Nyström [22] (approximating the homogeneous polyno-

mial kernel). We also compare these methods with the explicit ap-

proach φ(·) + RP, which involves explicitly transforming data with

the feature mapping φ( · ) followed by linear RP. Of course, this ap-

proach is highly inefficient, but we use it to measure how well KG-

RP and the proposed KRP approximate a Random Projection from

the kernel feature space. 

To evaluate the first property (i.e. pairwise distance preserva-

tion), we compare the squared Euclidean distance between two

transformed data samples to their squared Euclidean distance in

the kernel feature space. Formally, let x, y be a couple of data sam-

ples from R 

d and let f ( x ), f ( y ) be their k -dimensional representation

generated by any of the methods described in this paper, then: 

dist x,y = 

abs (|| f (x ) − f (y ) || 2 − || φ(x ) − φ(y ) || 2 ) 
|| φ(x ) − φ(y ) || 2 (18)

This measure can be interpreted easily. For example, if dist x,y =
0 . 11 we can conclude that the distance between both samples in

H suffered a 11% distortion (i.e. an increase or decrease) in the

resulting feature space. Conveniently, the computation of || φ(x ) −
φ(y ) || 2 can be done without any explicit evaluation of φ( · ), via

the kernel function [30] : 

|| φ(x ) − φ(y ) || 2 = −2 K(x, y ) + K(x, x ) + K(y, y ) (19)

To measure the distortion induced by a given method while trans-

forming a set of n samples, the average distortion among all the(
n 
2 

)
possible pairs of different samples is computed. For this reason,

we used the average distortion measure to compare the different

approaches described in this paper in terms of distance preserva-

tion. To evaluate them, the different methods were first provided

with the corresponding training set. Next, 500 samples were se-

lected at random from the test-subset of each dataset and trans-

formed by means of each competing method. The induced distor-

tion was then computed and averaged for the 
(

500 
2 

)
possible pairs

of test samples. 

As stated above, we also evaluated to what extent the differ-

ent methods can be used to boost the accuracy of linear classifiers

by generating a data representation where linear classifiers can ap-

proximate the accuracy of their non-linear counterparts. To this ex-

tent, each method was trained on the corresponding training set.

Next, it was used to transform both the training set and the com-

plete test set. A linear SVM was then trained 

9 on that representa-

tion and its classification accuracy was evaluated. To evaluate the
9 We used the linear SVM implementation of Liblinear [31] . An appropriate C 

value for the SVMs was determined by performing Cross-Validation over the train- 

ing set on each case. 

p

s

o

mprovement in the classification accuracy, we also provide the re-

ulting accuracy of training the linear SVM directly on the original

eatures of each dataset. 

To mitigate the non-deterministic nature of some of the evalu-

ted methods, which might negatively affect the significance of our

esults, the above described evaluation protocol was run ten times.

s a consequence, all the results reported in this section consist

f the average and standard deviation of the corresponding metric

ver those ten runs. For a fair comparison, all the experiments in

his paper were carried out on the same machine, equipped with

n Intel i7-6700K processor and 16GB of DDR4 RAM. It is also

orth noticing that, to ease the visualization of results in tables,

ach cell is colored according to the reported score (lighter is bet-

er in all tables). 

.1. MNIST dataset 

The database used for the first set of experiments is MNIST [32] .

his database consists of a collection of images of handwritten dig-

ts and has been extensively used in optical character recognition

nd machine learning research. It contains a total of 70,0 0 0 im-

ges, each of 28 × 28 dimension. The digits are size-normalized

nd centered on the center of gravity of the intensity in the image.

 predefined train/test split is usually used with 60,0 0 0 images for

raining and 10,0 0 0 for testing. 

.1.1. Distance preservation on MNIST 

First, we evaluate the different algorithms in terms of pairwise

istance preservation. We do so for the two most frequently used

olynomial degrees, namely g = 2 and g = 3 . We also measured

he time required to train each algorithm and transform 500 test

amples, reporting the average time required by each method. For

oth KG-RP and our method, the hyperparameter p must be man-

ally selected. Recall that, for KG-RP, hyperparameter p controls

he number of samples used by the underlaying Kulis–Grauman

ethod to estimate the mean and covariance matrix of data in

he kernel feature space (see [17] ). Meanwhile, in our method p

ontrols the number of random hyperplanes used to populate S

see Section 3.2 ). The reason for comparing KG-RP and our method

ith equal p values while they have different meanings is that, for

oth algorithms, the value of p determines the number of eval-

ations of inner products involving the d -dimensional data sam-

les during test phase (see Section 3.4 ). Furthermore, in both

ases p controls the accuracy/efficiency trade-off of the algorithm.

ue to the way these algorithms were designed, we know that

igher p values will always yield better results at the expense

f higher processing times. For this reason, we empirically eval-

ated the accuracy/efficiency trade-of that occurs when different

 values are chosen. In particular, we experimented with various

 values following the heuristic criterion proposed in [17] . Here,

he authors advise using a p = O( 
√ 

n ) , where n is the number

f training samples available. Accordingly, we experimented with

p = 

1 
2 

√ 

n , 
√ 

n , 2 
√ 

n and 4 
√ 

n . The hyperparameter t , which controls

he number of samples used by the CLT, was set to the recom-

ended value of 30 (see [17] ). The results for the polynomial de-

rees 2 and 3 can be found in Tables 2 and 3 respectively. 

Note that the method involving the explicit computation of

( · ) for each test sample was not evaluated for g = 3 . In the

ase of the MNIST dataset, storing the explicit form of test sam-

les in the kernel feature space for g = 2 required approximately

.172GB of free memory. 10 Doing so for the homogeneous poly-
10 Since x ∈ R 784 , φ(x ) ∈ H is 784 g -dimensional. In the case of the homogeneous 

olynomial kernel of degree 2, H is 614656-dimensional. As a consequence, the 

torage of 500 samples, assuming that a 4-byte float format is used, takes 1171MB 

f memory. 
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Table 2 

Results on distance preservation from the homogeneous polynomial kernel of degree two ( g = 2 ) for 500 samples from MNIST . 

Table 3 

Results on distance preservation from the homogeneous polynomial kernel of degree three ( g = 3 ) for 500 samples from MNIST . 
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omial kernel of degree 3 would have required almost a terabyte

f main memory, which is nearly intractable even for specialized

igh-performance computing systems. 

Not surprisingly, the results obtained using φ( · )+RP are the

est in all cases. However, the explicit computation of the fea-

ure mapping comes at a great cost. Looking at the computation

imes of this approach we see that, in all cases, transforming 500

NIST samples took longer than one minute. In addition, as previ-

usly explained, this approach becomes intractable for polynomial

egrees greater than two. For its part, Nyström aims to preserve
nner products rather than pairwise distances. However, a close re-

ation between both operators exists. As a consequence, our ex-

eriments show that Nyström was able to approximately preserve

he pairwise distances, but induced a significantly higher distortion

han the other methods. In addition, the distance preservation ca-

abilities of Nyström seem to be highly dependent on the output

imension, which is an important drawback since Nyström’s time

omplexity scales polynomially with this hyperparameter. 

Finally, KG-RP and our proposed KRP method try to approx-

mate φ( · )+RP while avoiding the expensive computation of the
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Table 4 

Classification accuracies on MNIST obtained by a linear SVM trained on the representations generated by different methods to approximate the feature space 

of the homogeneous polynomial kernel of degree two. 
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feature mapping. KG-RP exhibited a high dependence on the value

of the hyperparameter p . Unfortunately, the computational cost

of KG-RP grows fast with the value of this hyperparameter (see

Section 3.4 ). Moreover, even if high p values are used, KG-RP’s

distance preservation results are significantly worse than those of

our proposed method. The proposed KRP version provides the best

approximation of φ( · )+RP with very low computational require-

ments. As expected, if a sufficiently high p is used, the proposed

KRP method induces an average distortion in pairwise distances al-

most as small as the explicit approach. Conveniently, this approx-

imation is achieved with a very small computational cost (e.g. it

only takes 70 ms to train the algorithm and project 500 MNIST

samples to R 

10 0 0 ). In this case, P-RP seems to slightly outperform

our proposed method when p < 10 0 0, at the cost of much greater

computation times. However, increasing p above that threshold en-

ables our method to match the accuracy of P-RP, sacrificing some

of its efficiency. Also note that P-RP was only evaluated for g = 2 ,

as it is only compatible with second degree polynomial kernels. 

4.1.2. Classification on MNIST 

Here we evaluate to which extent the different methods can be

used to boost the accuracy of linear classifiers. In this case, we ex-

perimented with different p hyperparameter values and also with

different t values. 11 The resulting classification accuracies and their

standard deviations can be found in Table 4 , where we also provide

the computation times required to train each method and to use it
11 Note that p and t hyperparameters are only used by two of the evaluated meth- 

ods, namely KG-RP and our proposed KRP version (see Section 3 for more details). 

t  

c  

v

o transform the MNIST training set. It is worth noticing that the

ccuracy of a linear SVM classifier trained on the original MNIST

amples is 91.81% (using the implementation of Liblinear [31] with

 = 0.5) and the accuracy of a 2nd-degree polynomial-kernel SVM

s 97.84% ( C = 0.5). For completeness, we trained a SVM with

he Gaussian kernel, which achieved a 98.56% accuracy ( C = 5 ,

= 0 . 02 ). 

As we can see, the highest accuracies for both 1500 and

0 0 0 output dimensions were achieved with Nyström. The ex-

licit φ( · )+RP approach yielded slightly lower accuracies, with the

ap being smaller when using 20 0 0 output features. As expected,

he computational time required by this approach was several or-

ers of magnitude higher than that of the other methods. As both

RP and KG-RP try to approximate the computations performed in

he explicit approach, we cannot expect them to outperform Nys-

röm in this case. Regarding KRP, if a reasonably big p is used our

ethod achieves the same classification accuracy as the explicit

pproach. The accuracies achieved by P-RP were similar to those

f KRP, but again with a computational cost one order of magni-

ude larger. 

We found that the impact of t on the classification accuracy is

lmost neglectable, and thus we recommend using a small value.

n this regard, Fig. 4 shows the effect of varying t while keeping

he remaining parameters fixed. As in the previous set of experi-

ents, our method is the most efficient alternative, especially in

he training phase where it is orders-of-magnitude faster than al-

ernative methods. In this case, KG-RP fails to approximate the ac-

uracies obtained by the explicit approach, even for the highest p

alues evaluated. 
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Fig. 4. Effect on the classification accuracy of varying the value of t while using a fixed output dimension and p hyperparameter value. The accuracies were obtained by 

applying the proposed method with g = 2 followed by a linear SVM on the MNIST dataset, averaging the resulting accuracies of each experiment over 15 runs. 

Table 5 

Results on distance preservation from the homogeneous polynomial kernel of degree two ( g = 2 ) for 500 samples from Webspam . 
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.2. Webspam dataset 

The Webspam dataset [33] compiles thousands of web pages

ategorized as spam or legitimate. The goal of its creators was

o facilitate research on web spam detection algorithms by pro-

iding a large-scale, publicly available dataset. A refined version

f this dataset, used in [11] , can be found at the LIBSVM tools

ebpage [34] . This subset consists of uni-gram count features for

50,0 0 0 websites. Each sample was normalized to unit-length and

he number of features for each sample is 254. As opposed to

NIST, this dataset does not come with predefined training and

esting sets. For this reason, we used a 80/20 random split for

raining and testing, as done in [11] . Hence, the training and test-

ng datasets consist of 280,0 0 0 and 70,0 0 0 samples respectively. 

.2.1. Distance preservation on Webspam 

Tables 5 and 6 compile the results concerning the average dis-

ance distortion, obtained when transforming 500 samples from

he Webspam dataset with the homogeneous polynomial kernels
f degrees two and three respectively. A value of t = 30 was used

or KG-RP and KRP in all cases. 

Interestingly, in this case Nyström provided the best results in

erms of pairwise distance preservation form the kernel feature

pace. It even outperformed the explicit approach of φ( · ) + RP.

his result is certainly surprising because, by its mathematical for-

ulation, Nyström seeks to preserve inner products rather than

uclidean distances. The success of this method when evaluated

n the Webspam dataset contrasts with the results obtained in

ur experiments with other datasets, where Nyström never outper-

ormed φ( · ) + RP or KRP. Nevertheless, the previously mentioned

imitation regarding the scalability of Nyström holds, and the com-

utational time needed to train the algorithm and transform 500

amples grows polynomially with the desired output dimension. 

The results obtained using φ( · )+RP were as good as expected.

owever, once more computational costs render this approach im-

ractical. Even with the relatively low original dimension of Web-

pam samples, the explicit approach consumes up to 9 s to initial-

ze its projection matrices and transform 500 samples. 
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Table 6 

Results on distance preservation from the homogeneous polynomial kernel of degree three ( g = 3 ) for 500 samples from Webspam . 
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Regarding KG-RP and our proposed KRP method, our results

suggest that they are evenly matched when it comes to approx-

imating the pairwise-distance preservation capabilities of the ex-

plicit approach. However, if computational requirements are con-

sidered, our proposed approach offers a significantly better option,

as in this case it can provide similar distance preservation results

while keeping computation times under 80 ms (while KG-RP times

range from half a second to almost one minute). In this case P-

RP performed poorly, while also being significantly more computa-

tionally expensive than KRP. 

4.2.2. Classification on Webspam 

As with the previous dataset, we experimented with different

p hyperparameter values and also with different t values. The re-

sulting classification accuracies and their standard deviations are

shown in Table 7 . The table also provides the computation times

required to train each method and to use it to transform the Web-

spam training set. Note that the accuracy of a linear SVM classifier

trained on the original Webspam dataset is 92.55% (with C = 4)

and the accuracy of a 2nd-degree polynomial-kernel SVM is 98.4%

( C = 512 ). A SVM with the Gaussian kernel achieves a 99.23% accu-

racy ( C = 8 , γ = 32 ). 

Again, the highest accuracies for both 1500 and 2000 output

dimensions were achieved with Nyström. However, in this case

the accuracy difference between φ( · )+RP and Nyström was almost

neglectable ( ≈ 0.09%). As expected, both KRP and KG-RP approxi-

mate the accuracy achieved by the explicit approach, which brings

them very close to the accuracy obtained by the wining method,

Nyström. For instance, using KRP with the Gaussian distribution,

k = 1500 , p = 529 and t = 1 , one can achieve a linear classifica-

tion accuracy of 97.80%, which is only 0.19% below the accuracy

of Nyström for than same number of output dimensions. However,

KRP achieves this with a training time two orders of magnitude

lower and by using one-third the time to transform the samples.

The accuracies obtained with KG-RP are slightly lower than those

of KRP, and the difference increased when using low p values. Also,

the computation times of KG-RP are significantly greater. P-RP per-

formed comparably to KRP, but as in the previous experiments this

performance came with a computational cost approximately ten

times that of KPR. 
.3. w8a Dataset 

The w8a dataset [35] is a widely used [36,37] web-classification

ataset in the context of machine learning research. Conveniently,

t is publicly available and can be downloaded from the LIBSVM

ools web page [34] . Each sample in the dataset consist of a num-

er of binary features which represent the presence/absence of a

et of keywords in the web page associated to the sample. The

ataset contains a total of 64,0 0 0 samples, with 30 0 features each.

redefined training and testing sets are usually used for evaluation

ith 4 9,74 9 and 14,951 samples respectively. As opposed to the

ther datasets used in this paper, w8a exhibits a significant imbal-

nce in the distribution of class labels, which makes it much more

hallenging for algorithms which depend on correctly estimating

he distribution of data for their proper operation. 

.3.1. Distance preservation on w8a 

Tables 8 and 9 list the results concerning the average distance

istortion obtained when transforming 500 samples from the w8a

ataset with the homogeneous polynomial kernels of degrees two

nd three respectively. A value of t = 30 was used for KG-RP and

RP in all cases. 

In this case, both the KG-RP and Nyström methods fail to pre-

erve pairwise distances. This is probably due to the fact that both

ethods rely on estimating the distribution of the population of

amples and the significant amount of class imbalance exhibited

y the w8a dataset. One more time, φ( · )+RP produced the best

esults regarding distance preservation, at the cost of large pro-

essing times. Finally, the approach proposed in this paper ap-

roximated reasonably well the distance preservation properties of

( · )+RP, while keeping computational times always below 70 ms.

gain, P-RP performed poorly, while also being significantly more

omputationally expensive than KRP. 

.3.2. Classification on w8a 

Finally, we present the classification results of the different

ethods on the w8a dataset. Again, we experimented with differ-

nt p and t hyperparameter values. Due to the class imbalance in

8a , the accuracy is not the appropriate metric for measuring the

erformance of classification methods on this dataset. Instead, we
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Table 7 

Classification accuracies on Webspam obtained by a linear SVM trained on the representations generated by different methods to approximate the feature space 

of the homogeneous polynomial kernel of degree two. 

Table 8 

Results on distance preservation from the homogeneous polynomial kernel of degree two ( g = 2 ) for 500 samples from w8a . 
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Table 9 

Results on distance preservation from the homogeneous polynomial kernel of degree three ( g = 3 ) for 500 samples from w8a . 
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12 https://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/binary.html . 
used the F1-score: 

F 1 = 2 · precision · recall 

precision + recall 
(20)

which can be interpreted as an average of the precision and re-

call with an equal contribution of both metrics. We also report the

standard deviation in the F1-score over multiple runs of the exper-

iments, and the computation times required to train each method

and to use it to transform w8a ’s entire training set (see Table 10 ).

Note that the F1-score of a linear SVM classifier trained on the

original w8a samples is 0.7343 (with C = 1), which corresponds

to a classification accuracy of 98.66%. The classification F1-score of

a 2nd-degree polynomial-kernel SVM is 0.9020 (with C = 1 ). For

comparison, a SVM with the Gaussian kernel achieves a 0.9037 F1-

score ( C = 200 , γ = 0 . 05 ). 

As opposed to what happened in the experiments with MNIST

and Webspam, the classification performance with Nyström was

not the best. Instead, this approach is largely outperformed by

φ( · )+RP, with the gap between their scores being lower when us-

ing 20 0 0 output dimensions. Similarly, KG-RP performed poorly

in this dataset, supporting our hypothesis that these methods are

largely affected by the imbalance of the dataset. 

For its part, KRP performed remarkably well in this dataset,

achieving F1-scores similar to those of φ( · )+RP but with a

computational-time lower by orders of magnitude. For instance, by

using KRP with the Gaussian distribution, k = 20 0 0 , p = 446 and

 = 1 , one can achieve a linear classification F1-score of 0.8973,

which is only 0.0018 below the score of φ( · )+RP for the same

number of output dimensions. In this case P-RP performed poorly

also for classification, in spite of being significantly more compu-

tationally expensive than KRP. 

4.4. Polynomial kernel degree selection 

As mentioned before, due to their semantic, increasing the hy-

perparameters t and p for our method will always result in higher

accuracies at the expense of greater computational costs. How-

ever, determining the best polynomial degree g is not a straight-

forward task. While in some contexts the best performing polyno-

mial kernel degree is known based on expert knowledge, experi-

mentation is usually needed to determine the best value for this
yperparameter. In this subsection we show how the right polyno-

ial degree for our method can be determined by using a standard

yper-parameter selection strategy. In particular, given a desired

utput dimension and the value of p , the most appropriate ker-

el degree can be determined by executing k -fold Cross-Validation

n the training set with different polynomial kernel degrees. Then,

he best performing value of g according to the Cross-Validation

ccuracies is selected and evaluated on the test set. 

For the experiments in this section, we used the binary version

f the Covertype dataset [38] . The task with this dataset is to pre-

ict the forest cover-type from cartographic variables (e.g., eleva-

ion, slope, soil type, etc.). In particular, we used the pre-processed

ersion of the dataset available at the LIBSVM web page. 12 It con-

ains a total of 581,012 samples each of dimension 54. Since no

re-defined train/test split exists for this dataset, for our experi-

ents we randomly sampled 20% of the data to form the test set

116,202 samples) and 10% to form the training set (58,101 sam-

les). Table 11 shows the 5-fold Cross-Validation accuracies and

he corresponding test accuracies for different polynomial degrees,

alues of p and output dimensions on the Covertype dataset. Look-

ng at the table we can see that, for each output dimension and

elected p combination, the best performing polynomial degree in

he Cross-Validation process over the training set matches the best

erforming kernel as evaluated on the test set. This suggests that

he most appropriate kernel degree for a specific application can

e successfully determined with the above described hyperparam-

ter selection scheme. In addition, it must be noted that the best

erforming polynomial degree for our method need not be the

ame as the best polynomial degree for a conventional kernel-SVM

sing a polynomial kernel. Since our method is performing a Ran-

om Projection from the implicit kernel feature space, higher poly-

omial degrees might require a bigger output dimension to fully

apture their discriminative information, as the dimension of the

mplicit kernel feature space grows with the degree. Therefore, the

ptimal polynomial degree to be used with our method depends

n the selected output dimension. For instance, we can see that in

his case our method performed best using g = 3 only when the

utput dimension was at least 20 0 0. 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 10 

Classification accuracies on w8a obtained by a linear SVM trained on the representations generated by different methods to approximate the feature space of the 

homogeneous polynomial kernel of degree two. 

Table 11 

Classification accuracies for 5-fold Cross-Validation on the training set and for the test set of Covertype . The results show that, given an output dimension 

and the desired value of p , the most suitable polynomial degree g for our method can be selected by using a standard hyper-parameter selection strategy. 
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. Discussion and future work 

This paper proposes a novel method for perform Random Pro-

ections of data samples from the feature space of the homoge-

eous polynomial kernel. As opposed to previous kernelization at-

empts of the RP algorithm [10,39] , our approach preserves the

ata-independence and low computational complexity of the orig-

nal RP method. As a drawback, this was achieved by sacrificing

he generality of the method, focusing on a specific kernel family.

evertheless, the chosen kernel family, homogeneous polynomial

ernels, is one of the most popular choices and has been applied

o a wide range of classification and clustering problems, especially

n the field of natural language processing. 

Our work is highly related to the theoretical work of Balcan

t al. [14,16] , which demonstrated that performing a JL-valid Ran-
om Projection from the feature space of an arbitrary kernel is

enerally not possible, given only black-box access to the kernel

unction and without access to the distribution of data. However,

hey hypothesized that such methods could be developed for spe-

ific natural kernel families. The proposed method confirms their

ypothesis, since it approximates a Random Projection from the

eature space of the homogeneous polynomial kernel without ever

omputing the explicit form of the feature space nor considering

he distribution of data samples being processed. 

Our theoretical analysis of computational complexities showed

hat the time required by the proposed approach grows linearly

ith respect to the dimensionality of samples and the desired out-

ut dimension. Also, the training time of KRP is independent of the

umber of training samples as opposed to KG-RP, which requires

(p 3 ) training time where p must be set considering the number
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of available training samples. 13 Our method also compares favor-

ably to Nyström, whose training and testing time grow as O(k 3 )

and O(k 2 ) respectively. Our theoretical results regarding the com-

plexity of the alternative methods are confirmed by the experi-

mental results on computational time, where our approach con-

sistently reported the lowest times. 

The experimental results presented in Section 4 evidence the

performance of the proposed method both in terms of distance

preservation and generation of useful representations for linear

classification. Regarding distance preservation, the proposed ap-

proach outperformed alternative methods in most of our exper-

iments. In terms of classification accuracy, the proposed method

showed its ability to approximate the results obtained with the ex-

plicit φ( · )+RP approach. Since our method is an approximation of

the explicit approach, KRP was outperformed by Nyström on the

datasets where this approach performed better than φ( · )+RP. 

Apart from the above mentioned advantages of the proposed

method, it is also worth noticing that it works in a completely

data-independent manner. That is, the algorithm can be initial-

ized without any training sample, and the properties of the al-

gorithm do not depend on estimating the distribution of input

data. As a consequence, our method is well suited to work in on-

line/incremental learning scenarios [40] , where data samples arrive

in a sequential manner. 

Lastly, we proved that the kernelization approach proposed in

this paper is directly compatible with the database-friendly distri-

bution proposed by Achlioptas [7] . This property can be used to

ease the implementation of this algorithm in SQL environments, as

the projection of data samples over the random hyperplanes can

be done in terms of aggregate evaluation. In this regard, our ex-

perimental results show no significant accuracy loss when using

Achlioptas’ distribution instead of the standard Gaussian distribu-

tion. 

As for future lines of research, we propose exploring the devel-

opment of similar kernelized variants of Random Projection with

different kernel families. While in this paper we have focused on

the homogeneous polynomial kernel family, it would be interesting

to compare different kernel feature-space approximation methods

for various kernel families. In addition, we intend to investigate

the applicability of the proposed approach in different clustering,

classification and information retrieval tasks, especially in domains

where a limited amount of computational power is available (e.g.,

embedded systems and Internet of Things). 

Finally, we believe that a more in-depth theoretical and empir-

ical analysis of the distance-preservation capabilities of the Nys-

tröm algorithm is required, as we obtained some unexpected re-

sults when analyzing this aspect on the Webspam dataset. 
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