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a b s t r a c t 

The use of Bayesian Networks allows to organize and correlate information gathered from different 

sources and its optimization may incorporate restrictions adjusting the network based on expert knowl- 

edge and network operativeness, in such a way that it may satisfactorily represent a given domain. The 

main goal of this paper is to study if an optimized learned Bayesian Network may be used as a prior 

structure for an expert based network of an engineering structural material analysis. The methodology 

is applied to a database of results from an experimental campaign that focused on the mechanical char- 

acterization of timber elements recovered from an early 20th century building. To that study case it is 

evidenced that through a suitable combination of model averaging and supervision steps it is possible 

to achieve robust and reliable models to underpin the causal structure of a typical multi-scale timber 

analysis. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the engineering field, the analysis of a system is often a

complex problem when the objective is to predict a result variable

based on information from heterogeneous sources, which by their

own nature are necessarily uncertain to some extent. The analysis

of these systems requires that dependencies, or correlations, are

defined between different source variables and the result variable.

In the field of timber engineering, one of the main motivations for

probabilistic hierarchical modelling is to understand how proper-

ties, composition and structure at lower scale levels may influence

and be used to predict the material properties on a macroscopic

and structural engineering scales. For instance, different models

were proposed to hierarchically define stiffness and strength of

timber elements, by considering the presence of weak sections

separated by segments of clear wood ( Isaksson, 1999; Machado &

Palma, 2011; Riberholt & Madsen, 1979 ). In this case, it is known

that significant improvement of the model can be achieved by
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ncluding expert knowledge in its building process ( Constantinou,

enton, & Neil, 2016; Fenton & Neil, 2013; Pearl, 2009; Rebon-

to, 2010; Spiegelhalter, Abrams, & Myles, 2004; Zhou, Fenton,

 Neil, 2014 ). Furthermore, the collaboration between humans

nd machines (i.e., social machines) is gaining more and more

ttention in the AI (artificial intelligence) and expert systems

ommunity ( Smart, Simperl, & Shadbolt, 2014 ). A key factor for

his assessment is the correct integration of the supervision steps

n the elicitation workflow. What type of information the expert

s exposed to and when it is made available can substantially

mprove the final model performance. On the other hand, expert

nowledge must be consistently integrated with data. This means

hat expert constraints should be coherent with respect to the con-

itional independencies found in data. Finally, the knowledge base

as to be continuously updated with new information to ensure

earning. This poses the question of how to design human-machine

nteractive systems able to cope with these requirements. To that

im, Bayesian methods are prone to introduce new information

nd update prior beliefs within a predictive model ( Armero

 Conesa, 2006; Pendharkar, Subramanian, & Rodger,

005 ). 

Bayesian networks (BNs) have been used for inference on ma-

onry and concrete elements using both quantitative and qualita-
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ive data obtained from destructive and non-destructive tests, as

ell as from engineering judgment, to obtain the material strength

 Marsili, Croce, Klawonn, & Landi, 2017a; Marsili et al., 2017b ).

n timber engineering, BNs were used in Deublein, Schlosser, and

aber (2011) to describe the influence of different origins or

imensions of sawn structural timber on the relevant tim-

er material properties conditioned from indicator values as-

essed by machine stress-grading, whereas inference on stiff-

ess and strength of timber elements using BNs was discussed

n Sousa, Branco, Lourenço, and Neves (2016b) . In the case

f Sousa et al. (2016b) , the arrangement of nodes within the

N was solely derived from expert decision based on linear

orrelation between variables. Bayes updating methodology ap-

lied on timber engineering was further discussed in Feio and

achado (2015) ; Fink and Kohler (2015) ; Sousa, Machado, Branco,

nd Lourenço (2015) . In this paper, information gathered in a

ulti-scale experimental campaign regarding timber element’s

echanical characterization is used to obtain a probabilistic in-

erence model where BNs are applied to combine in an effective

ay heterogeneous information sources with expert knowledge. As

tressed, this knowledge must be consistently integrated with data,

eaning that expert constraints should be coherent with respect

o the conditional independencies found in data. The research goals

f this work are to present a formal procedure to assert expert

nowledge to probabilistic models, such as Bayesian Networks, in

he context of timber engineering. Timber is a anisotropic mate-

ial that poses several design challenges in civil engineering due to

ts variability, specially when dealing with existing structures. In

hat case, a combination of expert knowledge and non-destructive

ests is often used to assess the mechanical properties of timber.

owever, there is no global method to measure the influence of

xpert knowledge and how it will influence the prediction power

f the relevant mechanical properties of timber. The objective of

his work, is therefore to create a semi-automated process that

llows to build a Bayesian Network that must ensure the imple-

entation of expert information but maintain a strong prediction

ower regarding the mechanical characterisation of existing timber

lements. For this aim, a framework for the interactive elicitation

or the inter-relationships of different metrics in the timber struc-

ural analysis domain is presented. The present work considers the

ame data used in Sousa et al. (2016b) , but incorporating a semi-

utomated process to build a Bayesian network with expert infor-

ation. In this case, the expert knowledge is incorporated along

he elicitation workflow allowing to obtain a stronger prediction of

ach variable. The optimization process is verified by the predic-

ion power and the operativeness of the network. By using this

ramework, expert knowledge can be implemented in databases

here the relation between variables are not prior known and also

or networks with a large number of nodes, as the initial frame-

ork for the network is given by an automated process. Finally, the

rocedure allows to obtain a set of semi-automated models that

ay be compared to operative models (based only on expert deci-

ion), thus allowing to suggest possible network arrangements that

llow to update the prior beliefs of the expert aiming at a stronger

rediction of the variables in study. 

. Materials and methods 

.1. Bayesian methods 

In Bayesian methods, probabilities are taken as the best pos-

ible expression of the degree of belief in the occurrence of an

vent or conjugation of events. This approach does not stipulate

hat probabilities are direct and unbiased predictors, but if the

nalysis is carried out methodically, the probabilities will be cor-

ect if averaged over a sufficient large number of decision situa-
ions ( Vrouwenvelder, 2002 ). To fulfil that premise it is required

hat the experts subjective and intuitive part is neither continu-

usly over confident nor over conservative. To that aim, calibration

o common practice and to empirical data is considered as an ad-

quate procedure. The JCSS Probabilistic Model Code ( JCSS, 20 0 0 )

oncludes that, compared to the classic frequentist interpretation,

he Bayesian approach is more adequate, as it allows to update

istributions when having more statistical data. Reasoning be-

ween the correlation of source variables and experts interpre-

ation has long been a matter of discussion. Singh and Val-

orta (1995) proposed an algorithm that uses conditional indepen-

ence test based methods to generate an ordering on the nodes

n a BN. However, the same authors note that the reasonability

f use of the proposed model relies on the premise that it must

ave a much higher probability that the next most probable BN.

ore recently, Constantinou et al. (2016) focused on the problem

hereby the distribution of some continuous variable in a BN is

nown from data, but where it is intended to explicitly model the

mpact of some additional expert variable, for which there is ex-

ert judgment but no data. 

BNs are probabilistic graphical models that combine the prin-

iples from probability and graph theory to examine the relation-

hip among variables in a domain. In essence, a BN is represented

y a pair ( G, P ) where G is a directed acyclic graph (DAG) over the

et V of random variables and P is a joint probability distribution

f V. G links encode the variable dependencies and their cause-

ffect relationship. This constitutes the qualitative part of the BN.

Ns have also a quantitative part where local conditional probabil-

ties are mapped into the network nodes allowing to factorize the

oint probability distribution P in a very effective way ( Spirtes, Gly-

our, & Scheines, 1993 ). More technically a BN is a minimal map

f independencies (or minimal I-map) ( Pearl, 1997 ). This is equiv-

lent to say that BNs follow the Markov Condition (i.e., each vari-

ble X ∈ V , is conditionally independent of the set of all its non-

escendants given the set of all its parents). These definitions al-

ow to implement a BN in terms of independencies rather than in

erms of dependencies. However, it would be preferable to use the

N to encode dependencies in the sense that for instance, the par-

nts of a node are taken to be direct causes of that variable. Un-

ortunately, having two connected variables in G does not neces-

arily imply that these variables are dependent ( Pearl, 1997 ). This

s only true under two assumptions: causal sufficiency and faith-

ulness ( Spirtes et al., 1993 ). Causal sufficiency means that there

re not unobserved, latent, variables that are parent of one or

ore observed variables of the domain. The faithfulness assump-

ion means that the BN is a dependency (or D-map) of P ; every

riple of conditionally dependent variables ( X, Y, Z ) is d-connected

n G . Whereas faithfulness is an assumption usually made, causal

ufficiency is not likely to hold in real applications. Accounting for

he aforementioned conditions, a BN can be constructed manu-

lly, (semi-)automatically from data, or through a combination of

 manual and a data driven process. The data driven approach

s accomplished by means of structure learning algorithms which

eveal the potential causal pathways among variables. This strat-

gy has its pros and cons (see Margaritis (2003) for a detailed

nalysis of structure learning from data). On one hand, new in-

eresting interconnections among variables can be discovered. On

he other hand, the causal sufficiency assumption can fail and not

ll the resulting directed edges in the form X → Y (interpreted as

X causes Y”) are reliable. In particular, reversing the arrow to

 → X might encode a causal relationship which is more reliable

nd this operation can still be consistent with the conditional in-

ependencies present in the data. This indeterminacy needs to be

ackled by external (supervision) support. Hence, different supervi-

ion steps are needed to: (1) impose causal information and (2)

ule out equivalent structures by selecting the most appropriate
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according to the domain semantics. As stressed, this expert inter-

action is known to report significant improvements in model ro-

bustness and reliability. In this case, a network is considered ro-

bust if small errors in the independence tests do not lead to large

variations in the output results. Within this context, since condi-

tional independence tests can fail to capture the real independen-

cies (specially for small databases),models having incorrect edge

directions can be disregarded by means of one ore more super-

vision steps. This way, an external supervision can help in cor-

recting these inconsistencies, thus improving the robustness of the

network. 

In this work, although coding variable associations through

undirected links is often considered the most appropriate proce-

dure to implement relationships, only causal bonds will be con-

sidered, as specific cause-effect relations are aimed at. The idea

is to create a network that can be applied in real life scenarios

where only a direction sense is considered useful or physically pos-

sible. For example, the mechanical properties of timber should be

obtained through the results of the tests and not the other way

around. Therefore, in our current domain, the expert is forced to

provide directed bonds at his interventions. There are several types

of structure learning algorithms. These can be classified into three

groups: constraint-based (CS), score-based (SB) and hybrid. The

most popular CS algorithms are perhaps PC ( Spirtes et al., 1993 ),

Grow-Shrink (GS) ( Margaritis, 2003 ), Incremental Association

Markov Blanket (IAMB) ( Tsamardinos, Aliferis, & Statnikov, 2003 )

and Semi-Interleaved SI-HITON-PC ( Aliferis, Statnikov, Tsamardinos,

Subramani, & Koutsoukos, 2010 ) algorithms. PC orders the inde-

pendencies present in data from small to large to achieve larger

efficiency while GS, IAMB and SI-HITON-PC make structure dis-

covery faster by using the Markov Blanket concept ( Spirtes et al.,

1993 ). The MB of a node is defined as the set of nodes that

make that node conditionally independent of any other node in

the network. Hence MB can be understood as shields for indepen-

dency (given the MB any other information is irrelevant for that

node). 

Variations of these structure learning algorithms can be found

in literature (see Tsamardinos et al. (2003) for a comparison).

Constraint based (CS) models use conditional independence X 

2 ,

information based (e.g., mutual information MI) or other statis-

tical tests ( Margaritis, 2003; Pearl, 1997; Spirtes et al., 1993 )).

The resulting networks are sparse and fairly interpretable. How-

ever, CS algorithms have clear disadvantages. In particular, they

are not robust, since small errors in the independence tests can

lead to large variations in the output networks ( Margaritis, 2003 ).

This is a major issue when dealing with empirical distributions

because most surely theoretical independencies will not be pre-

served in the sample. On the other hand, score based methods

(SB) consist of two basic components: a scoring metric and a

search procedure. The scoring metric reflects the goodness-of-fit

of the data and can be the log-likelihood (LL), Minimum Descrip-

tion Length (MDL) ( Bouckaert, 1993 ), Bayesian Information Crite-

rion (BIC) ( Kass & Wasseman, 1995 ), Akaike Information Criterion

(AIC) ( Akaike, 1973 ) or more sophisticated metrics. However, it is

widely known that the LL score is guaranteed to overfit, foster-

ing more complex networks since the addition of new edges tends

to improve the metric ( Koller & Friedman, 2011 ). In this regard,

MDL, BIC and AIC seek a trade-off between fit to data and model

complexity. The Bayesian Dirichlet (BD) and its variant BDE scoring

functions ( Cooper & Herskovits, 1992; de Campos & Ji, 2010; Heck-

erman, Geiger, & Chickering, 1995 ) penalizes complex graphs less

than BIC and is also a common criteria for evaluating BN struc-

tures. The searching procedure can be any heuristic, like the pop-

ular Hill-Climbing (HC) algorithm or the Tabu search (TABU) (see

for instance Russell & Norvig (2003) ) that generates networks for

evaluation by the scoring metric. As it is known, learning a BN
tructure by brute-force search is NP-Complete ( Maxwell, 1996 ).

his fact has made the heuristic methods popular in the BN com-

unity. The drawback of this is the sub-optimality of the solutions

hen the algorithm gets stuck in local maxima. Finally, hybrid al-

orithms combine CS and BS to seek an optimum balance between

oth approaches. An example of hybrid method is the Max-Min

ill-Climbing MMHC ( Tsamardinos et al., 2003 ). 

.2. Database 

In this work, the results of a multi-scale experimental cam-

aign regarding twenty chestnut timber elements was considered

s initial database. The testing phase sequence, with three differ-

nt scales regarding the size of the timber elements is described

n Sousa, Branco, and Lourenço (2016a) . From one to the next

cale, the timber elements were sawn into smaller sizes in order

o clearly define the influence of defects and differentiate between

lear wood segments and segments with defects (each beam

as sawn into three boards). In each phase, bending modulus of

lasticity was measured according to the test principles of EN 480

 CEN, 2010 ). Furthermore, non-destructive tests were also made,

amely visual inspection as to categorize the different levels of

efects (size and distribution of knots and grain misalignment)

nd ultrasound tests as its results (i.e., dynamic modulus of

lasticity) are a common parameter correlated with the elements

tiffness (e.g., static bending modulus of elasticity). To create the

N, the parameters of the experimental campaign and its results

ere divided in three categories: (1) geometry; (2) onsite non-

estructive tests (NDT); (3) mechanical tests. The first category

s related to location of each segment within the element and

ts measurement scale. In that category, the following nodes are

efined: (a) element, (b) section, (c) position and (d) scale. Ele-

ent considers the identification of the twenty timber beams as

eparate and independent elements. Section defines the segment

osition in the horizontal direction (divided in seven segments),

hile position defines the segment position in the vertical direc-

ion (top, middle or bottom boards). Scale defines the phase of the

xperimental campaign starting with the elements on their initial

nsite conditions (old beams), after as sawn beams and finally as

awn boards. The second category, related to onsite NDT, include

wo nodes corresponding to visual inspection results (according

o UNI 11119 ( UNI, 2004 )) and to ultrasound results (in terms

f propagation velocity). The last category, related to mechanical

ests, include two nodes corresponding to the global and local

ending moduli of elasticity according to EN 408 ( CEN, 2010 ). The

ivision of these properties into different categories also expresses

ifferent levels of knowledge in a common mechanical charac-

erization of a structural elements. The first category includes

nformation that is easily available with a geometrical survey,

hile the second and third category require measurement of the

lement’s defects and testing. Globally, the dataset consists of 755

bservations of 8 variables: “Element ”, “Position ”, “Section ”, “Scale ”,

Visual inspection ”, “Ultrasound ”, “Local bending modulus of elasticity ”,

Global bending modulus of elasticity ”. Here, “Element ”, “Posi-

ion ”, “Section ”, “Scale ”, “Visual inspection ”, are categorical

hereas “Ultrasound ”, “Local bending modulus of elasticity ”, and

Global bending modulus of elasticity ” are numerical. “Element ” has

0 possible classes labeled with capital letters from “A” to “T”,

Position ” has: “bottom”, “middle” and “top” levels. “Scale” splits

nto “sawn beam” and “sawn board” classes. “Visual inspection ”

as 4 classes: “I”, “II”, “III” and “non-classifiable – NC”. As a

re-processing step the numerical variables were binned into 4

evels according to their quartiles. This ensures that there are

pproximately the same number of observations per class. The

ariables included in the database are summarized in ( Table 1 ) 
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Table 1 

Variables used in the database. 

Variable Symbol Type Classification Range of values Description 

Element E Geometry Categorical A to T 20 timber elements retrieved from a construction 

site 

Position P Geometry Categorical Bottom, middle, 

top 

Vertical location of measurements, each 

corresponding to one third of the height of the 

element 

Section Se Geometry Categorical 1 to 7 Horizontal location of measurements, each 

corresponding to a 40 cm segment 

Scale Sc Geometry Categorical Beams or boards Size of the elements corresponding to beams with 

7x15 cm cross-section or boards with 7x4 cm 

cross-section 

Visual 

inspection 

VI Non-destructive 

test 

Categorical I, II, III, NC Visual grading obtained according to ( UNI, 2004 ) 

Ultrasound Us Non-destructive 

test 

Numerical 1880–5630 m/s Indirect ultrasound measurements, considering the 

propagation velocity in 40 cm segments 

Local modulus 

of elascticity 

EL Mechanical test Numerical 2590–23385 MPa Modulus of elasticity measured between loading 

points according to ( CEN, 2010 ), in a 4-point 

bending test 

Global modulus 

of elasticity 

EG Mechanical test Numerical 1120–17740 MPa Modulus of elasticity measured between support 

points according to ( CEN, 2010 ), in a 4-point 

bending test 

Fig. 1. The implemented workflow consists on two phases: restriction elicitation and model-refinement. In both cases the automatic learning is aided by expert intervention 

at different stages, whether there is supervision or not, a set of candidate models is generated and evaluated. In phase 1 the winner models are used to discover expert 

constraints. In phase 2 this information is used to obtain a seed learning strategy which is then averaged over a set of equivalent replicates. Finally the expert can evaluate 

the performance of his operative model by using the rankings created in phases 1 and 2. 
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.3. Model construction 

As stressed above, a suitable combination of the expert knowl-

dge with the inferred models is the most promising approach to

chieve a reliable and robust solution when different sources of

nformation are available for a multi-scale analysis. In this work,

he approach was implemented in two phases ( Fig. 1 ). 1 In phase

, the expert is confronted with the learned models without any

onstraints. This is made to avoid any bias in the expert’s rank-

ng of the model. In phase II, the network is refined by imple-

enting, when possible, the suggested constraints taking into ac-

ount the predictive power before and after the supervision steps.

n both phases, the learning process of the network structure is
1 The respective software codes are available at: https://franciscoprietocastrillo@ 

itbucket.org/franciscoprietocastrillo/timberms.git 

b  

B

 

i  
ade through different algorithms that include or not supervision

onstraints. 

The dataset is relatively small ( < 10 variables and < 10 3 

ecords) and the consequent computing times are consequently

easonably low. This would encourage the use of CS methods

hich in the worst case are exponential ( Margaritis, 2003 ). How-

ver, as highlighted, both CS and SB have their pros and cons, be-

ng the poor robustness of CS the most limiting factor. This mo-

ivates to design a hyper-heuristic layer with different CS, BS and

ybrid learning algorithms that generate a pool of candidate seed

odels. The same algorithm produces a different output when a

ifferent conditional independence test or scoring function is used.

ence, a set of structure learning methods was created, by com-

ining these algorithms with the X 

2 and MI tests and with the LL,

IC, AIC and BDE scores ( Table 2 ). 

When this repository of learning objects is available, the data

s split into train and test subsets ( Fig. 1 ) with a proportion of

https://franciscoprietocastrillo@bitbucket.org/franciscoprietocastrillo/timberms.git
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Table 2 

Structure learning algorithms, tests and metrics used in this study. 

Algorithm Test/score References 

Constraint based 

GS X 2 Margaritis (2003) 

GS MI Margaritis (2003) 

IAMB X 2 Tsamardinos et al. (2003) 

IAMB MI Tsamardinos et al. (2003) 

SI-HITON-PC X 2 Aliferis et al. (2010) 

SI-HITON-PC MI Aliferis et al. (2010) 

Score based 

HC LL 

HC BIC Russell and Norvig (2003) , Kass and 

Wasseman (1995) 

HC AIC Russell and Norvig (2003) , Akaike (1973) 

HC BDE Russell and Norvig (2003) , Cooper and 

Herskovits (1992) , Heckerman et al. (1995) 

TABU LL 

TABU BIC Russell and Norvig (2003) , Kass and 

Wasseman (1995) 

TABU AIC Russell and Norvig (2003) , Akaike (1973) 

TABU BDE Russell and Norvig (2003) , Cooper and 

Herskovits (1992) , Heckerman et al. (1995) 

Hybrid 

MMHC X 2 Tsamardinos et al. (2003) 

MMHC MI Tsamardinos et al. (2003) 
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(67/33%). In phase I, once the models are learned from the train

set, they are extended to DAGs in case they are not directed

graphs. This is achieved by generating directions which are con-

sistent with the conditional independencies in data and also avoid

cycles. Then, for each model, the parameters (local probability den-

sity functions) are fitted with the train data. Since the existing

dataset is small, the parameters were estimated in a Bayesian set-

ting (see e.g., Koller & Friedman (2011) ) rather than through the

Maximum Likelihood Estimation (MLE) method. A uniform prior

distribution was used with a minimum smoothing provided by

an imaginary sample size of 1 as described in Scutari and De-

nis (2014) . Next, a scale for model performance was created. For

every fitted model the Kullback–Leibler Divergence (KLD) and the

prediction error were computed. Since KLDs diverge at null data

observation bins, the test dataset was smoothed by adding a small

quantity of 10 −10 . Then the KLD between the fitted joint and the

smoothed observed frequencies were obtained. Prediction errors

are simply the differences between the empirical joint in the test

data and the fitted joint in the model averaged over the nodes in

the model. To improve the reliability of this measure, instead of us-

ing a single test sample, a 10 test subsamples out from our whole

data of size 33% of the total was created. Then, for each subsam-

ple, the model parameters were learned from the remaining 67%

of data as before and the prediction error was computed. The final

measure is the averaged error over the 10 subsamples. The method

is implemented with the “hold-out” method of the bn.cv function

available in the bnlearn R package (see Scutari and Denis (2014) for

a general description about Bayesian Network analysis with bn-

learn , and Scutari (2017) for more details on the method). To fur-

ther illustrate how this method works for the present case, con-

sider to have 10 iterations. At iteration k , dataset test k is built by

randomly selecting 33% of all data, while train k is the remaining

67% of the data. Then the network is trained with train k and the

prediction error for test k is computed. This gives predErr k . Then the

process is repeated for k = 1,...,10 and after the average of predErr k 
is taken. Next, the ranks for both prediction error and KLD were

created with “1” meaning the best performing model under that

score, “2” the second best performing model and so forth up to

“n ” existing models. Finally, both ranks are added in a total score

and the minimum of that quantity is subtracted as to normalize
he scale. Although the same scoring functions used in the learn-

ng step should not be used in the evaluation step, the respective

ankings of LL, BIC, AIC and BDE were also included for complete-

ess of their analysis. 

Phase I ends with the presentation of the best ranked models

rom the CS, BS and hybrid learning algorithm families to the ex-

ert (prototype models). This helps the expert to better define the

ausal constraints and other restrictions he wants to implement. 

In phase II the expert’s feedback is encoded in terms of: (a)

ode constraints and (b) edge constraints. Node constraints re-

er to the elimination or not of a node. The reason for includ-

ng this is that although the dataset is assumed to contain all the

elevant features, once exposed to the relationships among vari-

bles, the expert might suggest that some variables are unneces-

ary given the observed structure. This is the case, for instance,

hen the dataset includes auxiliary variables whose relevance for

he model is unknown beforehand. The consistency of the sug-

ested constraints is then checked. As stressed, reversing an edge

irection may introduce loops in the DAG, violate some structural

onstraints or render an intolerable ranking for the BN. Hence, only

ome edges are allowed to switch their directions. Therefore, Pear-

on’s conditional independence test is used to check if every sug-

ested independence can be supported by the data. To this end

he null hypothesis for A,B being independent is ruled out if the

ssociated p − v alue for the X 

2 statistic is lower or equal to 0.05. If

onstraints are consistent, new candidate models are generated as

n phase I but with the constraints already implemented. Then, the

ame steps as in phase I are followed to reach the three best rep-

esentative for CS, BS and hybrid models. At this point a new su-

ervision step is introduced to select the most reliable model. This

llows to rule out models holding arc directions which make no

ense from the practitioner’s perspective. The most reliable model

seed model in Fig. 1 ) is then submitted to a non-parametric boot-

trap procedure. This works as follows. First, 10,0 0 0 replicas of the

raining data are created. Each replica is built by uniformly extract-

ng observations with replacement a number of times equal to the

ize of the training data. Then, a graph instance from each replica

s learned by using the same learning algorithm and scoring func-

ion as those in the seed model. For each pair of nodes A, B the

roportion of models having edge A − B is counted; if this is above

 threshold (50% for this case) that edge is kept. Finally, for each

urviving edge its direction is looked into. Conditioning on A − B

eing present, the probability of A → B and B → A is computed. The

irected edge which is above 50% is then kept. This is basically

 simple majority vote implementation to improve model robust-

ess ( Efron, 1982; Sinha, 1986 ). The parameters of the resulting av-

raged model are then learned from the training dataset and the

odel performance is evaluated as in phase I. 

. Results 

.1. Phase I: Unsupervised 

In Fig. 2 the resulting models of the algorithms in Table 2 are

resented. It can be noticed how the complexity of the models

n terms of edges largely varies across the different strategies and

etrics. In particular, the LL score being the most complex since,

s previously stressed, LL favors the creation of edges. The score

alues are shown in Table 3 . As expected, the correlation between

he number of arcs and the score functions is very high as it is

mong the score functions themselves. Also, it is noticed that the

ighest scores according to LL (most complex models) correspond

o the lowest values in BIC and AIC but not for BDE (the SI-HITON-

C based networks resulted in semi-directed graphs that could not

e converted into DAGs and could not be included in this ranking).

he sum of the BIC, AIC and BDE ranks (total rank) sorts the al-
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Fig. 2. Unsupervised models generated with the algorithms provided in Table 2 . 

Table 3 

Ranking of models in the unsupervised phase. For the prediction error, KLD, LL, BIC, 

AIC, and BDE metrics the rank is obtained for each model according to the values 

obtained for each metric. The last column is computed by adding the prediction error 

and KLD ranks and then subtracting the minimum of that value. 

Algorithm Arcs Error KLD LL BIC AIC BDE Rank 

bnSB-HC-BDE 6 1 2 4 4 2 1 1 

bnSB-HC-AIC 10 2 1 2 8 4 5 1 

bnSB-TABU-BDE 6 2 2 4 4 2 1 2 

bnSB-TABU-AIC 10 2 3 3 6 3 4 3 

bnCS-HITON-PC-MI 5 2 5 5 3 5 3 5 

bnSB-HC-BIC 5 3 4 6 1 1 2 5 

bnSB-TABU-BIC 5 4 4 6 1 1 2 6 

bnCS-IAMB-MI 5 6 6 7 5 6 6 10 

bnCS-IAMB- X 2 4 5 7 8 7 8 7 10 

bnH-MMHC-MI 2 7 8 11 2 7 8 13 

bnCS-GS-MI 3 7 9 10 9 10 9 14 

bnCS-GS- X 2 3 7 9 9 10 9 10 14 

bnH-MMHC- X 2 2 8 8 11 2 7 8 14 

bnSB-HC-LL 28 9 10 1 12 12 11 17 

bnSB-TABU-LL 24 10 10 1 11 11 12 18 
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2 Collider descendant probability is neglected since this is less likely because a 

very small amount of nodes is present. 
orithms in a way that evidences the clusters (distances) among

ankings; HC and TABU search heuristics group in the first posi-

ions closely. Finally, we also notice that constraint based and hy-

rid algorithms in general perform poorly compared with the score

ased algorithms (with the exception of LL scores). 

In Table 4 we show a summary of the in/out degree and size

f both the neighbour and Markov Blanket size of each node. The

uantities shown are the mean values obtained over the whole set

f models. The aim of this statistic is to evaluate the role of the

ariables in the different networks and see if the cause/effect re-

ationships can be elucidated. Nodes which are likely to get more

ead connections (high kin ) are better candidates for being inter-

reted as effects rather than causes. However, since causality can
ot be concluded from data unless there is a collider structure, we

ook into nodes with in-degree ≥ 2. This way, a high mean in-

egree is interpreted as a proxy of the likelihood of a node for

eing a collider, which in turn is a proxy for the likelihood of that

ode being an effect. 2 On the other hand the neighbour size and

he Markov Blanket size provide an estimate of the mean influence

f that node in the network in terms of connectivity (high nbrsize )

nd conditional independencies (large mbsize ) 
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Table 4 

Node statistics for unsupervised models. Measures: kin = in-degree. kout = out-degree, 

mbsize = Markov blanket size, nbrsize = number of neighbours. The quantities are the 

mean values obtained from the whole set of models for each node and measure. 

Measure E P Se Sc VI Us EL EG 

kin ≥ 2 4.0 0 0 0.0 0 0 2.0 0 0 2.0 0 0 5.0 0 0 4.0 0 0 6.0 0 0 6.0 0 0 

kin 0.625 0.125 0.500 0.687 1.0 0 0 1.125 1.437 1.250 

kout 1.562 0.750 0.562 1.250 0.687 0.812 0.250 0.875 

mbsize 2.562 0.875 1.375 2.500 2.250 2.375 2.125 2.562 

nbrsize 2.437 0.875 1.312 2.312 2.125 2.062 2.062 2.312 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Arc strengths in the boot model measured as propor- 

tions of edge/direction presence in 10,0 0 0 samples. 

From To Strength Direction 

Sc EL 1.00 1.00 

E EG 1.00 1.00 

E Us 1.00 1.00 

Sc EG 1.00 1.00 

Sc Us 0.97 1.00 

E EL 0.81 1.00 

Us VI 0.80 0.96 

EG VI 0.70 1.00 
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It is noticed that both local and global bending modulus ( EL

and EG ) are the nodes more likely to be an effect according to

their high kin ≥ 2 measure. This makes sense as these quantities

are intrinsic to the material and the other variables are commonly

used for measuring them. For instance, this is an evidence that the

mechanical properties are being measured by use non-destructive

tests, and not the other way around. Also, mbsize and nbrsize are

highly correlated as expected. It is also noted that Position is the

node with lowest connectivity. 

From these results it is concluded that bnSB-HC-BDE, bnCS-

HITON-PC-MI and bnH-MMHC-MI are the best candidates to rep-

resent score based, constraint based and hybrid algorithms. 

The correlations showed in phase I must be considered with

caution since they are unsupervised and correspond to the ar-

rangement of nodes that allow to a higher prediction of the vari-

ables. Nevertheless, some indications for the next step are already

noticeable. Firstly, it is noticed that the node P is independent from

any other variable in the three better scored models which is con-

sistent with the experimental results. When performing the tests

at each position (bottom, middle or top boards) the results are

made for each segment and no significant difference or variation

of results was found between those positions. 

It is also noticed that it is common to find a direct correla-

tion between EG and E in the better ranked models, whereas EL

is directly correlated with Sc . In line with the experimental results,

this evidences that EL is a parameter more related to the mate-

rial itself and thus scale dependent within the variation on each

element, whereas the EG is influenced by the variation between

different elements. In other words, there are significant different

values of EL when changing the scale within the same element,

whereas there are significant different values of EG between ele-

ments. Nevertheless, it is noted that EL and EG may also be indi-

rectly correlated through the node E . This corroborates the known

correlation between these two parameters evidencing that within

a same element there is a significant correlation between local

and global modulus of elasticity. It is also observed that the two

non-destructive tests, visual inspection and ultrasounds, are closely

related. This occurs because both measured the same segments

at the same scale and for both the existence and size of defects

(mainly knots) are a parameter that directly influences the results.

On one hand, knots are a defect that influences the choice of a

given visual grade and also knots are an obstacle to the ultrasound

wave thus influencing the propagation velocity. In this case, these

two nodes are closely related because of a parameter that influ-

ences directly both these variables. 

3.2. Phase II: Supervision and model refinement 

At this point, the model is refined by adding information pro-

vided by expert decision. Regarding this specific experimental cam-

paign, the Se node was removed since it only is representative of

the location of a segment and does not have any physical represen-

tation with any of the tests. Also, the E and Sc nodes were defined

as root nodes as often they are known parameters of the analy-
is. Implementing these constraints is consistent with the work-

ow and the results are shown in Fig. 3 

At this point, a new supervision step is introduced to check if

he model with the highest performance is reliable. In this case,

he bnSB-HC-AIC had the highest score and this model is approved

ecause, in terms of physical interpretation, the colliders modulus

f elascticity (both local and global) evidence that there is a signif-

cant importance on the variability between elements (due to the

lement node) and between scales of the same element (due to the

ode scale). This is found in literature where the variability within

nd between elements (even from the same species and origin) is

roved to be significant. 

As before, BDE scored with HC heuristic had a high score,

hus following the workflow, the averaged (bootstraped) version of

nSB-HC-BDE is shown in Fig. 4 . The arcs’ strength for the boot-

ng process are shown is Table 5 as proportions of edge/direction

resence in 10,0 0 0 samples. 

In Table 6 the final rankings of the supervised models are pre-

ented, including the averaged network. This model (dirAvgNet)

cores almost as good as the best algorithms in Table 6 . Its pre-

iction power is only one position below the seed model. The

uantitative difference between both prediction errors is neverthe-

ess small: 0.52 for dirAvgNet and 0.51 for bnSB-HC-AIC (1%). Also,

oth models have the best KLD ranking. This finding suggests that

he averaged model quality is as least as good as the best ranked

odel and that perhaps its small loss of accuracy compared to

nSB-HC-AIC is because this latter slightly overfits. 

At this point, both stages of the BN construction process are

ompleted. Initially, the framework of dependencies is established

nd then the network is refined with expert decision. The network

hat results from this process is more robust and allows to per-

orm inference on the parameters related to timber’s mechanical

roperties. However, the use of the network is yet to be defined,

s it depends on the scope of the research. In this case, the ob-

ained BN may directly be used to ascertain different ranges for a

isual grading according to the information of the visual inspec-

ion, since each class of inspection results from information ob-

ained by the ultrasound parameter and by stiffness parameters.

n the other hand, it is more common that the desirable outputs

effect nodes) of the BN are those related to the mechanical prop-

rties (in this case EL and EG ) since the other parameters (cause
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Fig. 3. Supervised models generated with the algorithms provided in Table 2 . 

Table 6 

Ranking of models in the supervised phase. Ranks are computed as in Table 3 . 

Algorithm Arcs Error KLD LL BIC AIC BDE Rank 

bnSB-HC-AIC 8 1 1 2 9 3 5 1 

dirAvgNet 8 2 1 2 9 3 5 2 

bnSB-HC-BDE 6 2 2 4 6 1 1 3 

bnSB-TABU-BDE 6 2 2 4 6 1 1 3 

bnSB-TABU-AIC 8 3 3 3 7 2 4 5 

bnCS-HITON-PC-MI 4 3 5 6 3 4 3 7 

bnCS-HITON-PC- X 2 4 3 5 6 3 4 3 7 

bnCS-IAMB- X 2 4 5 4 5 5 5 2 8 

bnSB-HC-BIC 4 4 6 7 2 6 6 9 

bnSB-TABU-BIC 4 4 6 7 2 6 6 9 

bnCS-IAMB-MI 3 8 7 8 1 7 7 14 

bnSB-HC-LL 20 6 10 1 10 10 10 15 

bnSB-TABU-LL 20 7 10 1 10 10 11 16 

bnCS-GS-MI 3 9 9 9 8 9 9 17 

bnCS-GS- X 2 3 9 9 9 8 9 9 17 

bnH-MMHC-MI 2 10 8 10 4 8 8 17 

bnH-MMHC- X 2 2 11 8 10 4 8 8 18 
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the element and to correlate that information with the mechanical 
odes used as input information) may be obtained more easily by

nsite inspection. 

. Operative network 

.1. Basis for the operative network 

During a safety assessment of an existing timber structure, it is

equired that the mechanical properties of the elements are deter-

ined. However, often it is not possible to test all elements or to

emove them from the building to perform laboratory tests. There-

ore, NDTs are used, but the information retrieved is only an indi-

ation of the real mechanical properties of the element. In order

o obtain reliable information, the data obtained in the multi-scale
xperimental campaign was used to construct an operative net-

ork that infers on the stiffness of the elements (bending mod-

lus of elasticity). This operative model is fully proposed by the

uthors regarding their past experience on the assessment of tim-

er structures ( Sousa et al., 2016a; Sousa et al., 2016b ) without a

earning process. The operative network was constructed consid-

ring three main premises: (1) geometrical parameters would be

onsidered as root nodes, since these are parameters easily obtain-

ble for timber elements onsite and only depend on the size of the

lement; (2) in the acyclic graph, NDTs would be parent nodes to

he mechanical properties, since the main objectives of using these

DTs are to provide information about the conservation state of



164 H.S. Sousa et al. / Expert Systems With Applications 93 (2018) 156–168 

Table 7 

Ranking of models including the operative network shown in Fig. 5 . Ranks are com- 

puted as in Table 3 . 

Algorithm Arcs Error KLD LL BIC AIC BDE Rank 

bnSB-HC-AIC 8 1 1 2 10 3 5 1 

dirAvgNet 8 2 1 2 10 3 5 2 

bnSB-HC-BDE 6 2 2 4 7 1 1 3 

bnSB-TABU-BDE 6 2 2 4 7 1 1 3 

bnSB-TABU-AIC 8 3 3 3 8 2 4 5 

bnCS-HITON-PC-MI 4 3 5 6 3 4 3 7 

bnCS-HITON-PC- X 2 4 3 5 6 3 4 3 7 

bnCS-IAMB- X 2 4 5 4 5 6 5 2 8 

bnSB-HC-BIC 4 4 6 7 2 6 6 9 

bnSB-TABU-BIC 4 4 6 7 2 6 6 9 

bnCS-IAMB-MI 3 8 7 8 1 7 7 14 

bnSB-HC-LL 20 6 11 1 11 11 11 16 

operational 5 9 8 10 5 8 8 16 

bnSB-TABU-LL 20 7 11 1 11 11 12 17 

bnCS-GS-MI 3 10 10 9 9 10 10 19 

bnCS-GS- X 2 3 10 10 9 9 10 10 19 

bnH-MMHC-MI 2 11 9 11 4 9 9 19 

bnH-MMHC- X 2 2 12 9 11 4 9 9 20 

averaged bnSB_HC_BDE

EG

EL

Sc

PEUs

VI

Fig. 4. Averaged network from the bnSB-HC-BDE seed model in the case of super- 

vised training. 

operative BN

Us

EG PELSc

VI E

Fig. 5. Operative network proposed totally in a supervised way. 
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properties of the timber element without performing destructive

tests; (3) the mechanical properties (bending stiffness) would be

child nodes of the network, specifically EG that should take into ac-

count the information of local parameters ( EL ) and of global NDT

(visual inspection). The main objective of the model is to predict

the mechanical properties having as predictors the NDTs and scale

without specific information of the element itself. The main objec-

tive of the model is to predict the mechanical properties having as

predictors the NDTs and scale without specific information of the

element itself. In Fig. 5 it is shown such model. From Table 7 it

is noticed how this model actually outperforms the other models

including the averaged network. This is only possible due to the
nowledge of the expert on already well established correlations

etween variables. Moreover, the number of variables are small

nd thus a simple network is possible to be defined without signif-

cant multicollinearity constraints. In any case, it is observed that

he scores are similar for the operational and the averaged net-

ork. This is a first indication that the averaged network, although

eing semi-supervised, can be used also for operative purposes. 

.2. Prediction model validation 

In order to validate the results of the inference models, in both

nsupervised and supervised phases (Phase I and II of the pro-

osed workflow), with the results of the operative model (fully su-

ervised), the conditional probabilities obtained for the node EG

iven its parents EL and VI are shown. The variable EG was con-

idered because, in the analysis of existing timber elements, this

s a mechanical property that depends on both the local material

roperties of timber, as well as on the number and intensity of

efects. The conditional probabilities are computed by MLE fitting

he local probabilities of each node of the networks. The results

re presented in Fig. 6 when prior information is given for VI and

n Fig. 7 when prior information is given for EL . The conditional

robabilities computed through each model are used for compar-

son in order to compare both the feasibility of the networks, as

ell as the change of value for different sets of prior information.

easures of relevance, such as precision and recall, were not con-

idered in this case study as the aim was to assess the feasibility of

sing the semi-automated networks independently of the strength

f the connection between variables within the given database. 

From the conditional probabilities considering VI as prior infor-

ation it is clear that all models behave similarly to a change in

isual grade. It is noticed that higher values of EG are more likely

o happen for classes I and constantly decrease for the remaining

lasses. On the other hand, lower values of EG are more likely to

appen for classes III and NC. It is also important to notice that the

upervised and operative models have more similar results. For the

ase where EL is the prior information, a similar trend is observed.

ower values of EL result on higher conditional probabilities for

ower values of EG , whereas higher values of EL result on higher

onditional probabilities for higher values of EG . As seen before, EL

esult on higher conditional probabilities for lower values of EG . It

hould be noted that due to the arrangement of variables in the

nsupervised and operative models, the values of EG given EL are

quivalent for both models, therefore only the comparison to the

upervised model is given in Fig. 7 
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Fig. 6. Conditional probabilities of EG given VI . 

Fig. 7. Conditional probabilities of EG given EL . 
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The results evidence that a supervised network, based on a first

tructure given by an automated process, has a similar behaviour

ompared to a network based solely on expert knowledge, when

ifferent types of prior information are provided. Moreover, as seen

efore, this supervised network ranked better in terms of predic-

ion power, thus it may be used in a case study application with

 more accurate prediction of the target variables without contra-

icting the expert’s expectations. 

. Concluding remarks 

Engineering analysis of complex systems with multiple vari-

bles depend on the strength of correlation between those vari-

bles for a reliable inference of a specific target variable. When

everal variables are present in the analysis, optimized learned

ethods can be used in order to ascertain which models ren-

er the best combination of predictors. In this work, this con-
ept was used together with Bayesian Networks as to infer on

echanical properties of timber. The proposed methodology was

ivided in two phases, unsupervised and supervised. Based on a

anking process a model was obtained and after compared to a

odel obtained exclusively from expert decision. The model ob-

ained from the proposed methodology was able to outrank the

rediction power of a network given fully by expert knowledge,

till maintaining similar results for different scenarios adapted to

ommon needs in the assessment of timber elements onsite. The

omparison was made through conditional probabilities obtained

ith different prior information. 

Accounting the proposed methodology, a comparison is made

ith work on the field of structure learning using Bayesian net-

orks. For instance, in the interesting work of de Campos and

astellano (2007) the authors formalise the absence of a restriction

y allowing undirected edges. This results in partially directed net-

orks which are consistent with the constraints. The authors pro-
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vide a self-consistency criterion that outperforms traditional condi-

tional independence tests. In the case of this work, the analysis is

restricted to totally directed constraints. The reason for doing this

is to obtain a cause-effect situation as in this specific context, tim-

ber engineering, relationships among variables must be directed

as to obtain a formal operative procedure that can be applied for

the assessment of existing timber elements onsite, based on a spe-

cific database. Therefore, self-consistency conditions a), b) and c)

from Proposition 1 in de Campos and Castellano (2007) are satis-

fied. However, even in the case of providing restriction consistency,

the proposed approach relies on the supervision step of the best

scored models. This allows to disregard models with meaningless

arcs from the causal point of view. Therefore, this approach can-

not be reduced to the self-consistency criterion, as self-consistent

models in one step can be disregarded by the expert later on.

Also, in Masegosa and Moral (2013) an interactive approach for

integrating expert knowledge is proposed similarly to the present

work. That method also relies on identifying the edges of the graph

structure which are more unreliable considering the information

present in the learning data and uses the expert knowledge at dif-

ferent stages to direct the edges accordingly to its assumptions.

Similar procedure was also adopted by Chawla et al. (2016) where

expert knowledge is used to prune or strengthen edges connecting

variables. 

In Flores, Nicholson, Brunskill, Korb, and Mascaro (2011) , an al-

gorithm based on adjacency matrices makes it clear that, in the

context of a medical case study, the simplest kind of prior informa-

tion was more effective in aiding model discovery than either us-

ing no prior information or using more sophisticated and detailed

expert priors. In that case, a hybrid causal learning of Bayesian

Networks was used for comparison of different expert information,

whereas in the framework proposed in this work, the first phase

is independent of expert information and it is updated in a sec-

ond phase with the restrictions of the expert which already has

the possibility to follow a suggested structure for its network. Also,

in the field of medicine application, the work of Bouchaala, Mas-

moudi, Gargouri, and Rebai (2010) proposed a score based on im-

plicit inference network. This score is then implemented in K2 and

MWST algorithms. This is similar to the proposed method for this

work, however in this case several structure learning algorithms

were already considered and the method is not restricted to a set

of implicit learning algorithms as new algorithms can be used and

a ranking between models can be determined at the first stage of

the procedure and after complemented with the expert informa-

tion. 

In contrast with Almeida et al. (2014) , the first stage of this

proposed method provides an initial framework that after can be

updated with the experts knowledge and restrictions, neverthe-

less that work also indicates that Bayesian networks built by spe-

cialists can with minor perturbations yield better classifiers, while

maintaining most of the interpretability of the original network.

It is also noted that, in the present proposed method, the ex-

pert may choose to include or not his knowledge in the con-

struction of the final network. This issue is also addressed in

Constantinou et al. (2016) where it is aimed at preserving data-

driven expectations when the expert variables remain unobserved,

but also incorporating a method towards determining the accuracy

of expert judgement in terms of the extent to which the variability

of the revised empirical distribution is minimised. In this case, the

method proposed in this work is dependent on the judgement of

the expertise, however it also provides a ranking where the expert

may decide to maintain or withdraw his information, with the aim

of having a network with higher prediction power. 

The case study analysed in the present work has a limited num-

ber of measurements which can be seen as a drawback to the anal-

ysis. Even if this is not limiting to the proposed method, an algo-
ithm including Monte Carlo simulations, such as that proposed in

ano, Masegosa, and Moral (2013) , can be further implemented if

equired without changing the main core of the learning structure

nd the ranking procedure. In the case of Cano et al. (2013) , Monte

arlo simulations were used to decrease the cost of elicitation of

nformative prior probability distributions of the graph structures.

ithin the same concept, the work of Su, Borsuk, Andrew, and

aragas (2014) uses a Markov chain Monte Carlo based Bayesian

etwork structure learning algorithm to address the challenges of

ata containing missing values and incorporation of expert knowl-

dge to improve computational efficiency. Although, in the present

ork the limitation regarding the use of both numerical and cate-

orical data was undermined when categorising each variable prior

o the construction of the networks, it should be noticed that, as

entioned by Chang, Zhou, Jiang, Li, and Zhang (2013) , there is a

ombinatorial oversize issue when there are too many attributes

nd/or too many alternatives for each attribute in belief rule based

lgorithms. 

Within the case study, it was found that similar trends of pre-

iction of a global mechanical property of timber were obtained

or both the supervised (learned network) and a network based on

xperts’ knowledge, when different sets of prior information was

iven. The benefit of the use of the proposed method was, there-

ore, to obtain a network with a better prediction power with-

ut compromising its operativeness within a case study applica-

ion. Even if the network provided fully by expert decision may

eem quicker to obtain, this may not be the case for networks with

igh number of variables, where the semi-supervised procedure

roposed in this work may be advantageous as it provides a first

tructure for the network. Moreover, the expert decision may lead

o an operative model that is well fitted to its objectives (obtain-

ng information on certain target variables), but may induce a de-

rease on the prediction power since it has more restrictions, thus

he database may not be fully compatible with the experts initial

ssumptions. Therefore, although the number of samples and vari-

bles is low, it was evidenced that the proposed methodology may

rovide a reliable model consistent with the onsite evaluation of

xisting timber elements. 

It should be noted that in the Bayesian approach there are

any equivalent models which compete for representing knowl-

dge and predict data in the best possible way. Furthermore,

n general it is not possible to identify a single optimal causal

ayesian Network, but rather a small set of likely causal Bayesian

etworks that fit the knowledge given by the data. Therefore,

he advantage of the combination of expert supervision and au-

omatic learning that was proposed in this work is that it allows

o strengthen practitioner’s confidence into a model. Moreover, the

dvantage of the proposed method is to allow the practitioner to

ave a framework for the construction of his network based on a

anking on prediction power. This is specially noted for networks

ith a high number of variables or when correlations between

ariables are not known in advance. In the case of a high num-

er of variables, both a fully supervised approach followed by data

erification, or rather an unsupervised approach completed by the

xpert intervention can be used. In the first case, the expert model

ill be compared in terms of ranking to other models and the ex-

ert may chose to continue with is model or update it, whereas,

n the second case, the expert may intervene in the supervision of

 network already proposed by the structure learning algorithm.

he second case will allow for a more robust network based on its

rediction power and will decrease the effort of the practitioner in

etermining the structure of the network. 

It is stressed that even by using a very optimised approach

o include expert information, as that provided in ( de Campos &

astellano, 2007 ), the operativeness of the final model can be im-

roved when more supervision steps are included in the workflow.
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he drawbacks of this method are mainly related to the ranking

rocedure, since it depends on each type of structure learning al-

orithms which, if not chosen carefully, may be conflicting with

ach other. This issue is relevant since the metrics used to obtain

he models should not be used to validate them. Moreover, the

etwork must be created regarding a database that reliably rep-

esents the target variables and its correlations, which in the case

f timber elements may depend on the wood species, state of con-

ervation, among other parameters. 
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