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Abstract In this paper we investigate an extension of Hebbian learning in a Principal 
Component Analysis network which has been derived to be optimal for a specific 
probability density function(pd0. We note that this probability density function is one of 
a family of pdfs and investigate the leaming N k S  formed in order to be optimal for several 
members of this family. We show that, whereas previous authors [6] have viewed the single 
member of the family as an extension of PCA, it is more apprapliate to view the whole 
family of leaming rules as methods of performing Exploratory Projection Pursuit(EPP). We 
explore the performance of our method first in response to an artificial data me, then to a 
real data set. 

INTRODUCTION 

Principal Component Analysis (PCA) is a standard statistical technique for 
compressing data; it can he shown to give the best linear compression ofthe data 
in terms of least mean square error. There are several artificial neural networks 
which have been shown to perform PCA e.g. [ I  I ,  121. We shall be most interested 
in a negative feedback implementation [4]. 
The basic PCA network [4] is described by equations (1)-(3). Let us have an N- 
dimensional input vector at time t, x(t), and an Mdimensional output vector, y. 

with qj being the weight linking inputj to output i. 9 is a learning rate. Then the 

activation passing and learning is described by 
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(3) AT, =qejy i  

The weights converge to the Principal Component directions. 

Exploratory Projection Pursuit (EPP) is a more recent statistical method aimed at 
solving the difficult problem of identifying structure in high dimensional data. It 
does this by projecting the data onto a low dimensional subspace in which we 
search for its structure by eye. However not all projections will reveal the data's 
structure equally well. We therefore define an index that measures how 
"interesting" a given projection is, and then represent the data in terms of 
projections that maximise that index. Now "interesting" structure is usually defined 
with respect to the fact that most projections of highdimensional data onto 
arbitrary .lines through most multi-dimensional data give almost Gaussian 
distributions 131. Therefore if we wish to identify "mteresting" features in data, we 
should look for those directions onto which the data-projections are as far from 
the Gaussian as possible. 
We have previously implemented EPP using an artificial neural network [5];  the 
method is essentially a non-linear modification of the negative feedback network. 
The network can be described by the following set of equations 

M 
e, = x, -Cwkjsk 

h l  

r = f ( s 0  
AWy = qqe, 

where .y is the sphered activation of the j" input neuron, si is the activation of the 
i' output neuron , W, is the weight between these two and ri is the value of the 
function f() on the i'output neuron. 
It wds shown in [SI that the use of a (non-linear) function fo in equation (7) cleates 
an algorithm to find those values of W which maximise that function whose 
derivative is f() under the constraint that W is an orthonormal matrix. This was 
applied in [SI to the above network in the context of the network performing an 
Exploratory Projection Pursuit. Thus if we wish to find a direction which maximises 
the kurtosis of the distribution which is measured by SI, we will use a function f(s) 
= s' in the algorithm. If we wish to find that direction with maximum skewness, we 
use a function f(s) =s'in the algorithm. 

In this paper, we derive a new neural method of performing Exploratory 
Projection Punuit from a probabilistic perspective. 
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A NEW NEURAL IMPLEMENTATION OF EXPLORATORY 
PROJECTION PURSUIT 

It has been shown [IS] that the leaming rule 

can he derived as an approximation to the best linear compression of the data. 
Thus we may start with a cost function 

(6) J ( W ) =  l‘E{(x-Wy)”) 
which we minimise to get the rule(5). [6] used the residual in (6) to define a cost 
function of the residual 

(7) J = f, (e) = f, (s - WY) 
where f, = Il.uz is the (squared) Euclidean norm in the standard PCA Nk 

We may show [2] that the minimization of 1 is equivalent to minimizing the 
negative log probability of the residual, e,  ife is Gaussian. Let: 

1 

Z 
(8) p(e)  =-exp(-e’) 

Then we can denote a general cost function associated with this network as 

where K is a constant. Therefore oerformine eradient descent on 1 we have 
(9) J = -log p(e)  = (e)2 + K 

where we have discarded a less important term (see [8] for details).In general [13], 
the minimisation of such a cost function may be thought to make the probability of 
the residuals greater dependent on the pdf of the residuals. Thus if the probability 
density function of the residuals is known, this knowledge can he used to 
determine the optimal cost function which in turn gives an optimal leaming rule. 
This suggests a family of learning rules which are derived from the family of 
exponential dstributions. Let the residual after feedback have probability density 
function 

Then we can denote a general cost function associated with this network as 
(12) J = -log p(e)  4 e I p  +K 

where K is a constant. Therefore performing gradient descent on J we have 

y ( p  le 1P-I sign(e))‘. (13) A W = - - = - - - =  where T denotes &J de 
a@‘ a e a W  

the transpose of a vector. We would expect that for leptokurtotic residuals (more 
kurtotic than a Gaussian distribution), values of p<2 would be appropriate, while 
for platykurtotic residuals (less kurtotic than a Gaussian), values of p>2 would he 
appropriate. It has been shown in the ICA community [7] that it is less important to 
get exactly the correct distribution when searching for a specific source than it is 
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to get an approximately correct distribution i.e. all supergaussian signals can be 
retrieved using a generic lepkurtotic distribution and all subgaussian signals can 
be retrieved using a generic platykurtotic distribution. Our experiments will tend to 
support this belief to some extent but we often find accuracy and speed of 
convergence are improved when we are accurate in our choice ofp. 
Therefore the network operation is as before except: 
Weight change: 

(14) AT, =q.yi.sign(ej)lej 1p-l 

By maximising the likelihood of the residual with respect to the actual 
distribution, we are matching the leaming rule to the pdf of the residual. We may 
thus link the method to the standard statistical method of Exploratory 
Projection Pursuit. Now the nature and quantification of the interestingness is in 
terms of how likely the residuals are under a particular model of the pdf of the 
residuals. 

RESULTS USING ARTJFICIAL DATA SETS 

We follow [5] in creating artificial data sets, each of IO dimensions. All results 
reported are based on a set of IO simulations each with different initial 
conditions. It is our general finding that sphering is necessary to get the most 
accurate results presented below. 
In the first data set, we have 9 leptokurtotic dimensions and one gaussian 
dimension; this is almost the opposite of the standard EPP data sets described in 
[SI and is rather far from being a typical data set in that most of the 
directions in terms of its natural basis are non-Gaussian. However, since we wish 
to investigate our new models, it is a good test set since we can easily see the 
results of our method. We wish to identify the single Gaussian dimension md 
ignore the leptokurtotic dimensions. The leptokurtotic dimensions may be 
characterised as having long tails; if a residual can be created by removing the 
Gaussian direction from the data set, the residual will automatically be 
leptokurtotic. Thus we consider maximising the likelihood of the residual using the 
model 

(15) p(e)=-exp(-lelP) with@; 

We have experimented with a number of values of p and report on simulations with 
p=1.5. A typical result is shown in Fig. I ;  the Gaussian direction is clearly 
identified. 

1 
2 

Fig. 1. The Gaussian direction was the third among 9 leptokurtotic dimensions. It has 
clearly been identified in this Hinton map of the weights. 
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We have similar results with a data set containing 9 platykutotic dimensions and 
one Gaussian dimension. We use the same leaming rules as before but with a 
value of p=3. If our data set consists of 9 Gaussian dimensions and 1 leptokurtotic 
dimension, we can identify the leptokurtotic dimension with a tule using p>2. This 
is really saying that all residuals will be unlikely using this model but that the 
leptokurtotic dimension is more wrong under the platykurtotic model than the 
Gaussian dimensions and should he removed from the residual. In the next section, 
we derive an alternative method for this data set. 
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COMPARING AND MJXING THE TWO EPP METHODS 

We now compare the effectiveness of the two algorithms on artificial data sets. 
The artificial data is used to compare the speed of convergence of the 
algorithms in identifying interest in a data set since we know, in advance, 
exactly what sort of interesting structure is in the data set and can measure the 
progress of the algorithm towards identifying the structure. We will call the 
original algorithm the Higher Moments Algorithm 
In this section, we create a I O  dimensional data set in which 9 dimensions are 
drawn from a Gaussian distribution and one dimension from a uniform distribution. 
The uniform distribution is platykurtotic (has less kurtosis than the Gaussians) 
and so the higher moments algorithm can use y’ or more stably tanh(); the 
maximum likelihood method will use p<2. The rate of convergence of the 
algorithms is shown in Figure 2: the left figure shows the dot product of the 
weights vith the ideal solution when the higher moments EPP algorithm with a 
tanh() nonlinearity is used while the right shows the convergence of the Maximum 
Likelihwd EPP algorithm with p=l. We see that the latter has extremely fast 
convergence but does not achieve an accuracy of more than 0.9 while the former, 
though it takes a little longer to get to the optimum, is much more accurate. This 
suggests that an algorithm which uses both rules might gain by having the best 
attributes of both and this is in fact the case. 
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Figure 3 shows the convergence of an algorithm which uses a combination of 
these two rules i.e. 
Weight change:Ayj  =q.f(yi).sign(ej)l ej 1' where f() is the tanh() 

function in the experiment the results ofwhich are shown in Figure 3. We seem to 
he getting the best of both worlds with this combined method though it must he 
conceded that the combination is somewhat ad hoc. It is for this reason that we 
have not included results from this method elsewhere. 

Fig3. Convergence of the algprithm using the combined learning lule 

EXPERIRlEh'TS USING AN ASTRONOMICAL DATA SET 

The data consists of 65 colour spectra of 115 asteroids used by [IO]. We have 
previously compared the performance of a variety of artificial neural networks on 
this data set 191. 
The data set is composed of a mixture of the 52-colour survey by [ I ]  together with 
the 8-colour survey conducted by [I61 providing a set of asteroid spectra 
spanning 0.3-2.5p. When this extended data set was compared by [IO] to the 
results in Tholen [I41 it was found that the additional refinement to the spectra 
lead to more classes in the taxonomy produced by Tholen. We have tested the 
networks on this data set looking at the differences in classification accuracy 
between clustering and projection networks. Standard PCA (p=2) separates out 
the classes A and (some of) B hut leaves most of the others in a sngle group (Fig. 
4) 

332 



Fig. 4. Projection of the asteroid data set onto the first two Principal Components. 
Maximum Likelihood Leaming with p<2 however shows a much greater separation of this 

central cluster (Figure 5 was f" a simulation with e . 5 ) .  

If we compare Figure 4 and 5 ,  we see that both find the classes A and (some ot) B 
easy to separate but Maximum Likelihood learning with p<2 does spread the data 
out somewhat better. - ~. ~ 1 .  : .  
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INDEPENDENT COMPONENT ANALYSIS 

Independent Component Analysis (ICA) networks are often derived as extensions 
of PCA networks. ICA and the related problem of blind source separation have 
recently gained much interest due to many applications.We may describe the 
problem as follows. Let there be N independent non-Gaussian s$nals s,,s2,.. .,sN 
which are mixed using a (square) mixing matrix A to get N vectors, x, each of which 
is an unknown mixture of the independent signals, I = As. 

Then the aim is to use an artificial neural network to retrieve the original input 
signals when the only information presented to the network is the unknown 
*re of the signals. The neural network's output will be y where y= W x. Note 
that the outputs, yare  to be the elements of the original signal in some order i.e. 
we are not insisting that the first output of our neural network is equal to the first 
signal, the second equal to the second signal and so on. We merely insist that 
neuron i's output is one of the N original sgnals not mixed any of the other 
signals. There is also an amplitude ambiguity which cannot be resolved. 

Now the Central Limit Theorem states that mixtures of signals are liable to be more 
gaussian than the individual signals. This suggests using the Maximum Likelihood 
rules in quite a different way from that proposed previously. If we have a mixture 
of n kultotic signals, completely removing one of these signals gives a residual 
which is more kurtotic than removing a little of each of the s'gnals. 

Extraction Of A Sial From A Mixture 
We begin with three mixed speech signals which we have previously used to 
demonstrate neural methods of performing ICA. We linearly mixed these three 
signals using a random mixing matrix. 
Each of the signals comprised 40000 samples of a speaker stating "Perhaps the 
most frequent use of ICA is in the extraction of independent voices from a 
mixture". The kurtosis of the individual signals is 6.8444, 7.7582 and 3.6833 
respectively. We use a learning rate of 0.0001 and I00000 iterations (randomly 
sampling with replacement from the 40000 samples) to extract each signal in a 
deflationay manner - we use maximum likelihood learning with a value of p=l (a 
Laplacian distribution) which extracts one signal completely (see below) and then 
repeat the experiment with the resiiual mixture of the other two signals. 
As a measure of success, we use W*V*A i.e. the weights leamed by the method 
times the sphering matrix times the mixture matrix: 

0.0170 -0.0050 -1.0000 

0.0122 0.9995 -0.0021 
-1 0.0162 

Table I .  We see that the product matrix is very close to a permutation matrix 
showing that the signals have been extracted correctly. 

W*V* A= 
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Similarly we have experimented with 5 suhgaussian artificially generated signals 
randomly mixed. Their kuaosis values were -0.9845, -0.9638, -0.9769, -0.9795 and 
-0.9673 respectively. Notice that all sample kurtosis values are approimately equal, 
something which causes other methods some difficulty. Again we used 40,000 
samples, a learning rate of 0.0001 and no annealing of the leaming rate, with p 4 .  
This somewhat more difficult problem required 500 000 iterations (hut see below) 
for each signal and the product matrix WVA is 

WVA = 

Table 2. Again we have almost a permutation matrix indicating that the sources 
have been recovered. Now the reason we needed to use 500000 iterations is that 
the last signal is much the most difficult to extract (and we see that in the last 
column its accuracy is much worse). The reason for that lies in the fact that there is 
only one signal left in the “mixture” at this time: the network is atempting to 
structure the residuals to model the probability density function hut if it is 
successful, there will be no residuals to model. This is somewhat of a conundnun. 
Of course, we can obviate this conundrum by simply noting that the fourth 
residual contains only the last signal but this is somewhat unsatisfactory since we 
do not (in a truly blind problem) know {\em a priori} how many signals are in the 
mixiure. 

CONCLUSIONS 

We have derived a family of learning rules based on the probability density 
function of the residuals. The real power of these leaming rules is in the context of 
exploratory data analysis This family of rules may be called Hebbian in that all use 
a simple multiplication of the output of the neural network with some function of 
the residuals after feedback. The power of the method comes from the choice of an 
appropriate function. We showed how to choose a function to maximise the 
likelihood of the residuals under particular models of probability density functions. 
We now see that both the original PCA Nk and the sinsensitive rule [ 5 ]  are 
merely particular cases of this class of rules. We have also shown that the rules 
are more akin to Exploratory Projection Pursuit and prefer to call them Maximum 
Likelihood Hebbian learning, believing that ‘e-insensitive PCA’ does not do justice 
to the power of the method. We have also shown how powerful Minimum 
Likelihood Hehbian learning is and indeed that this is, in some sense, even more 
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closely related to EPP. These are powerful new tools for the data mining commu- 
nity and should take their place along with existing exploratory methods. 
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