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This paper  investigates  a  particular  data  mining  problem  which  is  to  ‘identify’  an  unknown  number  of
targets  based  on  homogeneous  observations  that  are  collected  via  multiple  independent  sources.  This
particular  clustering  problem  corresponds  to a significant  problem  of  multi-target  detection  in the multi-
sensor/scan  context.  No  prior  information  is given  about  either  the  level  of clutter  (namely  noisy  data)
or  the  number  of targets/clusters,  both  of which  have  to be  learned  online  from  the  data.  In  addition,  the
data-points  from  the same  source  cannot  be  grouped  into  the  same  cluster  (namely  the  cannot  link,  CL,
onstrained clustering
bject identification
ulti-target detection

ensor fusion

constraint)  and  the  sizes  of the  generated  clusters  need  to be bounded  by the  number  of  data  sources.
In  the  proposed  approach,  a density-based  clustering  mechanism  is proposed  firstly  to  identify  dense
regions  as  clusters  and  to  remove  clutter  at the  coarser  level;  the  CL  constraint  is then  applied  for  finer
data  mining  and  to distinguish  overlapping  clusters.  Illustrative  datasets  are  employed  to demonstrate
the  validity  of the  present  clustering  approach  for multi-target  detection  and  estimation  in  cluttered
environments  which  are  affected  by  both  misdetection  and  clutter.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Cluster analysis has been one of the most important technolo-
ies widespread in a variety of disciplines as a powerful tool for
iscovering the hidden structure/pattern in data. Due to the sig-
ificant difference among data models, ranging from computer
ciences to social sciences, small datasets to very large databases,
nd numerical data to data categories, a vast number of cluster-
ng algorithms have been proposed. It is fair to say that no single

ethod applies to all cases, but all are model-specific and dedi-
ated. The explosive development of clustering has also prompted
eviews and surveys regarding general models e.g. [6,16], sequen-

ial [3]/time-series model [4,9], high-dimensional models [5,7],
lustering with constraints [1,2], and clustering validity measure
8].

∗ Corresponding author.
E-mail addresses: t.c.li@usal.es, tiancheng.li1985@gmail.com (T. Li), fer@usal.es

F. De la Prieta Pintado), corchado@usal.es (J.M. Corchado), jbajo@fi.upm.es
J. Bajo).

1 Dr. Li holds a Marie Skłodowska-Curie individual fellow position with the BISITE
esearch group.

ttp://dx.doi.org/10.1016/j.asoc.2017.07.012
568-4946/© 2017 Elsevier B.V. All rights reserved.
Clustering is usually taken as part of unsupervised learning as no
prior information is available concerning the class of data-points.
Nevertheless, in many problems a fair amount of a priori infor-
mation is often available and can therefore be employed for more
effective and efficient clustering, namely semi-supervised clus-
tering [1,29]. Clearly, a priori information such as the number of
clusters is critical both to the clustering result and to the clustering
speed. For instance, if the number of clusters, namely the parameter
k, can be correctly predefined, the k-means method is particularly
preferable [6] otherwise it can be computationally NP hard [43,42].
Cluster center initialization can significantly affect the convergence
speed and the output of the k-means algorithm [10,11]. Automat-
ically determining number of clusters k has been one of the most
difficult issues in data clustering. Most methods focus on model
selection or matching in which clustering algorithms are run with
different values of k; the best value of k is then chosen based on a
predefined criterion such as information criterion values [12], rate
distortion theory [13], etc.

Particularly, the ‘cannot link’ (CL) and the converse ‘must link’

(ML) constraints are two efficient rules for encoding a priori knowl-
edge [14,19,20] and can significantly affect the outcome. The former
corresponds to the requirement that two data-points should be
assigned to different clusters, whereas in the latter the cluster labels
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f two targets should be the same. This allows the user to incorpo-
ate expertise into the clustering process by explicitly specifying
he required or desirable property in the clustering outcome. Typ-
cal examples in this line include constrained k-means clustering
20], constrained hierarchical clustering [21] and the graph-cut
ased clustering with cluster size constraint [22].

Constrained clustering has received considerable attention in
road applications. Some constrained clustering algorithms do not
llow any violation of the constraints, i.e., in all the iterations of the
lgorithm the resulting partitions must satisfy all the constraints.
hile this strict constraint may  be interesting in certain cases, it can

e computationally intractable. To overcome this limitation, more
exible alternatives have been proposed to minimize the number
f violated constraints e.g. [23]. In such a case, the constraints are
ften referred to as soft constraints.

In this paper, we address a specific data mining problem in
hich the data originates from a number of independent and
omogeneous sources, leading to a CL constraint whereby the data

rom the same source cannot be grouped into the same cluster.
n other words, all the data in the same cluster must belong to
ifferent sources while data-points from the same source have
o be partitioned into different clusters, even if they are very
losely distributed. This multi-source data clustering (MSDC) prob-
em originates from a significant engineering problem involved in
he context of multi-sensor multi-target tracking [24]. These data-
oints, excluding an unknown number of outliers/clutter, belong
o an unknown number of clusters, each of which corresponds to a
arget of interest. This MSDC problem where the observations from
ifferent sources are homogeneous and approximately i.i.d. (inde-
endent and identically distributed) in the state space is different
rom the similarly-called multi-source/multi-view data clustering
roblem [3,25–28] or the wireless sensor network–based cluster-

ng [40,41] where no i.i.d. condition holds, different sources/views
re heterogeneous, and clutter/CL constraints may  not be involved.

However, the multi-source CL constraint is more or less related,
ut still significantly different from some existing work, such as the
airwise CL constraint [19–22], where few specified data-point-
airs cannot be linked, or the semi-supervised learning [29,30],
hich labels the sources of the data (where training is carried out).

urthermore, overlapping clusters are involved where clusters can
e overlapped if the corresponding targets are closely distributed.
n existing research, mixed data among overlapping clusters are
onsidered to be outliers [35], to belong to one or multiple clusters
31–33] or to belong to a given cluster to a certain degree [34]; see
lso [36,37]. None of these existing clustering approaches, however,
xactly meet our requirements.

We  frame multi-sensor multi-target detection as a constrained
lustering problem (without using any traditional filter) and corre-
pondingly propose a clustering method that is able to filter clutter
nd to detect the latent targets of interest from cluttered environ-
ents. Our approach is the hybrid of a density-based clustering

rocess (at the first/coarser level) and a distance-based cluster-
ng process (at the second/finer level). Two respective processes
ave complementary goals: in the coarser level of density based
lustering, the clutter will be identified and removed from further
onsideration. In the finer level of distance-based clustering, each
ntermediate cluster formed via the density rule will be revised
o meet the CL constraint and to partition the over-size clusters.

 short and earlier version of the proposed clustering method
ppeared in [39]. Compared to our conference paper, new content
rimarily consists of three aspects: 1) a novel and more computa-

ionally efficient solution for the finer distance-based clustering; 2)
omputing complexity and memory analysis of the algorithm and
) explicit application for multi-target detection.

The rest of the paper is organized as follows. Section 2 for-
ulates the problem model. Section 3 presents the detail of the
Fig. 1. Multi-source independent and identically distributed data: black dots rep-
resent clutter while different colors mark observations of different targets.

proposed clustering method. The simulation results are shown in
Section 4 and Section 5 concludes the paper.

2. Problem definition and formulation

2.1. Multi-source data fusion

Multi-object/target detection and estimation (MODE) involves
estimating the state of an unknown number of moving or stationary
targets based on the noisy observations in the presence of clutter
(namely outlier/noise in the clustering context, which also refers
to false alarms that correspond to no target). Examples include
buildings/crops in remote sensing images, or diseased cells/cracks
in X-ray tomographic images, just to name a few. This is a scientific
problem of dominating importance in a large variety of commercial,
government and military realms, and has been extensively studied
in the past half century based on various filters [24].

The general multi-target detection scenario can be modeled by
the following assumptions:

(A.1) each target generates observations (in the format of data-
points) independently of others and one target generates no more
than one observation in each sensor at each scan;

(A.2) the target observation is coupled with unimodal noises,
commonly e.g., zero-mean Gaussian;

(A.3) the sensor may  miss-detect any targets with a probability;
(A.4) the clutter is assumed to be generated randomly over the

scenario, independently of the targets, whose distribution density
is much lower than that of the real observations of targets around
the true position of targets.

Given that the targets are stationary against time, the observa-
tions received at different scans are independent and identically
distributed (i.i.d.). The ‘i.i.d.’ condition approximately holds when
massive homogeneous sensors, e.g., large scale wireless sensor net-
works, are used to monitor the same scenario, forming multi-views
of the same scenario. It can also be loosely relaxed to accommodate
the general scenario where targets are moving with a relatively low
speed that is insignificant compared to the revisit frequency of the
sensor (therefore, their movement is negligible between different
scans, similar to the case of constant targets). Both multi-scan and
multi-sensor can be collectively referred to as multi-source. In this

paper, we  formulate this multi-source data based MODE problem
from the clustering viewpoint.

For illustration purpose, Fig. 1 gives the observations of targets
(colored data-points) and clutter (black data-points) collected in 50
sources under the above assumptions (A.1-4), which are mapped
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ig. 2. Multi-source independent and identically distributed data mapped in the
lanar space: (a) all the data (b) desired clustering result (ground truth).

nto the same planar x − y space as shown in Fig. 2(a). Our goal is to
istinguish the observations of each target from those of the others,
nd from the clutter, as shown in Fig. 2(b). The desired clusters
an overlap with each other when targets are closely distributed
n the observation space. If we can cluster the observation data
roperly, the number of targets and their positions can then be
urther estimated.

Intuitively, the observations of a particular target are subject to
 unimodal distribution (as the observation noise is assumed to be
nimodal in A.2) and so will cluster (around the true state of the
arget) while the random-appearing clutter will not. Meanwhile,
he data input from the same source are independent (as assumed
n A.1) which leads to the multi-source CL constraint in which data
rom the same source cannot be linked. The data distribution den-
ity and the CL constraint form two key factors to partition the
bservations of targets from clutter and from those of each other
n our approach.

.2. Problem formulation

The MSDC problem described above can be formulated as a CL-
onstrained clustering problem. Consider a dataset X consisting of
ata points

i ∈ P, i = 1, . . .,  N (1)

here d is the dimensionality, P is the parameter space, x and N is
he number of data-points to be clustered. In this paper we  focus
n the spatial data-points defined on numeric values where each
ata-point represents a coordinate in the state space.

The dataset can be written with respect to the sources. Denot-
ng all the data-points from the sth source as Ss =

{
xs

1, xs
2, . . .xs

ms

}
here ms is the number of data-points in the sth source, the multi-

ource dataset is defined as
 :=
{

S1, S2, . . .Sn

}
=
{

x1
1, x1

2, . . .x1
m1

, x2
1, x2

2, . . .x2
m2

, . . .,  xn
1, xn

2, . . .xn
mn

}
(2)

here n is the number of sources. The i.i.d. condition specifies that
ifferent sources of data-points are subject to the same spatial dis-
ribution, to say q, written as

s∼q, ∀ : s ∈
{

1, 2, . . .,  n
}

(3)
The goal of clustering here is to assign the data-points from dif-
erent sources to a finite number of k subsets, called clusters C1,
2 . . . Ck. Particularly, the CL constraint requires that

/=
(

xs
i , xs

j

)
, ∀i, j ∈

{
1, 2, . . .,  ms

}
, s ∈

{
1, 2, . . .,  n

}
(4)
ting 60 (2017) 436–446

where c /=
(

xs
i
, xs

j

)
means that xs

i
, xs

j
cannot belong to the same clus-

ter. This is equivalent to defining the distance between data-points
from the same source as infinite.

It is necessary to note that there are often noisy data-points
(called clutter) that shall be excluded and shall not be associated to
any target. Here, we refer to them as a set of outliers Co. The union
of these subsets is equal to a full data set:

X = C1∪ C2∪ . . .∪ Ck∪ Co (5)

Moreover, these subsets do not interact in our approach, i.e.,

Ci∩ Cj = ˚, ∀i, j ∈
{

1, 2, . . .k, o
}

(6)

But, this is violated in other clustering methods [14], such as soft
clustering.

As addressed so far, the goal of clustering can be described
as: to group the multi-source data given in (2) to the multiple
clusters given in (5) while satisfying the CL constraint (4) and non-
interacting condition (6). Given that the distance between two
data-points from the same source is defined as infinite (to include
the CL constraint), the partitioning of the oversized cluster shall
maximally minimize the distance sum between points within the
same cluster. One challenge comes from the unknown number of
clutter and targets/clusters, which may  render the optimization
problem computationally intractable. Particularly, the clutter could
be significant as the number of noisy data can be larger than that of
the real data. When the number of clusters is treated as a variable,
the optimal clustering problem is basically NP hard.

2.3. Multi-source CL constraint and the size of clusters

The CL constraint (4) will limit the number of data-points in each
cluster (namely the size of the cluster) to an expected level, which
cannot be larger than the number of sources. That is, the sizes of
the generated clusters have to be subject to a flexible constraint

|Ci| � n, ∀i ∈
{

1, 2, . . .k
}

(7)

where |Ci| means the number of data-points in cluster Ci, namely
the size of the cluster, � means “smaller than or approximately
equal to” in which “approximately equal to” is because of the clut-
ter that may fall in the cluster, and n is the total number of related
sources that gives a loosely defined upper limit. As one cluster
corresponds to one target, the notation i also indexes a target.

More precisely, we  can estimate the expectation of the size of
each cluster, namely the expected number of observations received
from each target i. The cluster size is given by the number of detec-
tions in the cluster, which depends on both the number of sensors
whose field of view (FoV) covers that cluster, and their respective
detection probabilities. Denoting the number of the sensors whose
FOV covers target/cluster i as ni and the detection probability of
sensor s on target i as ps

D (i) ≤ 1, a simple estimate of the cluster
size is given by

E[|Ci|] =
ni∑

s=1

ps
D(i) � ni (8)

In a simple case, the detection probability of each sensor pD (i) is
a constant, denoted as pD, over the entire scenario, which will ren-
der all clusters of similar size, namely∀i, j ∈ {1, 2, . . .k{: E[|Ci|] =
E
[
|Cj|
]
.

When multiple objects appear close, their detections can be

easily clustered into one cluster. As a criterion to realize the CL
constraint, the over-sized cluster has to be divided into multiple
individual sub-clusters if the size of the cluster exceeds limitation
ni. To partition the cluster, another threshold � is needed to give the
average number of detections in a single-object cluster. It shall be
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esigned with respect to the expected number E [|Ci|] of detections
or a single local object, e.g., �i = l × E [|Ci|], where 0 < l < 1 is scalable
nd involves a trade-off between missing detections (if too high l)
nd causing false alarms (if too low). In reality, it is very rare that
ore than two clusters overlap and we recommend l ∈ [0.6, 0.9].

n this paper we use l = 0.8 which is demonstrated to work reli-
bly for most of the cases we found. The number kiof sub-clusters
ontained in cluster Ci satisfies

i�i ≤ |Ci| < (ki + 1) �i (9)

As long as there are not too many closely distributed targets, ki
an be approximately calculated by

i ≈
[ |Ci|

E[|Ci|]
]

(10)

here [ · ] denotes the rounding operation which gives the near-
st integer to the content. If a priori information about ps

D (i) is
navailable for calculating E [|Ci|] in (8), an alternative to estimate
he number of sub-clusters that shall be formed can be given by the
verage number of data-points in each cluster that are originating
rom the same source (for all sources). This can be written as

i ≈
[

1
ni

ni∑
s=1

|{xs
j ∈ Ci|j ∈ {1, 2, . . .ms}}|

]
(11)

Our clustering solution will be presented next with an analytical
omplexity analysis and an online learning method to estimate the
ey required parameter.

. Multi-source n-points clustering

.1. The main procedure

As aforementioned, a key piece of information that can be
mployed to cluster the data is the distribution density of the data-
oints, for which the data-points that significantly cluster are more

ikely to be the observations from targets. This inherently resem-
les the density-based clustering in which clusters are high density
egions in the feature space separated by low density regions. In
ddition, the CL constraint (4) has to be taken into consideration
or finer data mining based on the intermediate density-based clus-
ering results. Overall, the proposed clustering scheme shown in
lgorithm 1 consists of three main steps: 1) search across sources to

dentify different groups of data-points that are closely connected
n the feature space; 2) for each group of an adequate number
f connected data-points, determine whether to form it as a sin-
le cluster (which should be approximately equal or slightly less
han E [|Ci|]) or divide it into multiple sub-clusters (if significantly
xceeds E [|Ci|]); and 3) if the CL constraint needs to be strictly sat-
sfied, revisit each cluster to make sure that the CL constraint is
atisfied.

The optimal clustering problem concerned with unknown
tatistics about either the targets or the clutter for which the num-
er of targets needs to be identified and clutter-distinguished from
eal detections, is generally a NP hard problem. To solve the prob-
em efficiently, at the first level, we will not explicitly consider
he CL constraint. Instead, the first step focuses on associating
losely distributed data-points across different sources. To do so,

 “neighbor radius”  (NR) parameter εi is needed to distinguish close
ata-points from clutter, where i indicates different clusters. In
ection 3.2, we will show that this parameter can be online learned.
Remark 1. NR parameter εi corresponds to the maximum dis-
ance between a data-point and its neighbors from the other
ources for their direct connection to be included in the same
luster, which resembles the neighbor radius parameter used in
BSCAN [17] (density-based spatial clustering of applications with
Fig. 3. Finer clustering of overlapping data-points from 10 sources (clutter is
denoted by black “.”).

noise). It can be designed with respect to the standard deviation �i
of the cluster distribution, e.g., εi = (1∼3) �i where �i corresponds
to the magnitude of the noise affecting the observation on tar-
get/cluster i. Clearly, the larger the observation noise, the larger εi.
If statistical knowledge of the observation noise is infeasible, it can
be approximately estimated from the dataset as shown in Section
3.2.

Remark 2. The proposed density-based clustering scheme,
namely Step 1 of Algorithm 1, needs to visit each data-point, possi-
bly multiple times, for which the computing complexity is mostly
governed in practice by the number of region query invocations.
Like DBSCAN, our approach executes exactly one such query for
each point. Given that an efficient tree indexing structure is used
and NR parameter ε is chosen properly, so that it executes a neigh-
borhood query in O (logN) (i.e. on average only O (logN) points are
returned for each point), an overall average runtime complexity
of O (NlogN) is obtained. Without the use of an accelerating index
structure, or degenerated data (e.g. all points within a neighbor
distance), the worst case will be O

(
N2
)

.
To conduct the CL constraint in the second step, a detection

of the number of data-points in each cluster shall be applied to
distinguish and further partition oversized clusters into several
sub-clusters. Given the number of sub-clusters to divide from an
oversized cluster via (10) or (11), the k-means algorithm is compe-
tent to obtain sub-clusters of an approximately equivalent size [39].
To avoid violating the CL constraint, we can simply set the distance
between two data-points that are from the same source as infinite.
If k and d are fixed, the optimal k-mean clustering can be carried out
in time O

(
Ndk+1

)
[43], which is indeed costly. Instead, a variety of

heuristic algorithms such as Lloyd’s algorithm and its accelerated
versions [42] can be used. The running time of Lloyd’s algorithm
is O (wk|Ci|d) for w iterations needed until convergence, k centers,
and |Ci| (which is smaller than N) points in d dimensions. However,
w may  be superlinear with respect to |Ci|, even exponential in the
worst case [43], although it can be specified as small when the data
inherently have a clustering structure.

To partition the oversized cluster more efficiently, we  propose
a solution of certain linear complexity, which is described in Algo-
rithm 2. The procedure is illustrated in Fig. 3 for three overlapping
clusters where the data-points are from 10 sources. In the figure,

different marks represent different sources; the color on the right
subfigure represents different cluster labels.

Remark 3. The runtime complexity of Algorithm 2 mainly
depends on the query searching of data-points from each source,
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Fig. 4. Clustered data-points (circle ‘o’ with different color), corresponding to
Figs. 1 and 2.
40 T. Li et al. / Applied Soft C

amely Step 2.2. Each cluster needs to execute maximally one query
earching for each point so the runtime complexity isO (k|Ci|d),
hich does not need iteration and is much lower than that of the

-means.
Remark 4. In the proposed clustering schemes based on either

ensity or distance, the distances between data-points are needed.
he distance matrix of size

(
N2 − N

)
/2 can be materialized to avoid

istance re-computations for speedup, but this needs O
(

N2
)

data
torage memory, whereas a non-matrix based implementation only
eeds O (N) memory.

In addition, if the resulting (intermediate) clusters based on
he coarser density-clustering are not oversized, they will not be
evised by the finer distance-based clustering, which may leave a
ew data-points violating the CL constraint. Therefore, as an alter-
ative, each cluster may  be double-checked and revised at the end
o make sure that the CL constraint is fully respected. For any clus-
er that violates the CL constraint, a simple solution is to remove
ll the data-points violating the CL constraint except the one that
s nearest to the center of the cluster. This is referred to as strictly
onstrained clustering; otherwise, without this step, our approach
s referred to as soft constrained clustering.

Based on the presented procedure, the clustering results for the
ata-set given in Fig. 1 are shown in Fig. 4. In the figure, clustered
ata-points are circled with different colors. Again, the color of the
ircles is independent of the color of the data-points. As can be seen,
he results appear very reasonable. Particularly, it is possible to dis-
inguish between the overlapping clusters (red and blue), although
here are a few mismatching data-points.
Algorithm 1 multi-source n-points clustering

Step 1: Calculate the distances between any two
data-points from different sources in the
parameter space. Two  data-points will be
identified as connected and classified into the
same group Ci if their distance is smaller than a
threshold vector εi; see Remark 1 and Algorithm
3.  Any group Ci of size larger than l × E [|Ci|]
data-points forms a cluster.

Step 2: Calculate (10) or (11) for each cluster obtained in
the  first step. If ki ≥ 2, the ‘oversized’ cluster has to
be further partitioned into ki sub-clusters based on
the CL constraint; see Remark 2 and Algorithm 2.

Step 3 (alternative): Revisit each cluster: all the data-points violating
the CL constraint except the one that is nearest to
the center of the cluster will be removed from the
cluster.

Algorithm 2 Partitioning overlapping clusters

Step 2.1 Identify the source s that contributes the minimum
number of data-points to the underlying oversized cluster.

Step 2.2 Starting from a data-point in source s, associate it with the
nearest data-points in all the other sources to form a
group; assuming the group has ni data points in total, it
forms a new sub-cluster if and only if ni ≥ l × E [|Ci|].

Step 2.3 Repeat Step 2.2 till all the data-points in source s are
grouped into sub-clusters or until all ki sub-clusters are
formed

Step 2.4 Apply Step 2.1–2.3 to the remaining sources excluding s if
the total number of sub-cluster is still smaller than ki .

.2. Online estimating NR parameter ε

In the case that the statistic property of the sensors is available,
he NR threshold ε can be determined correspondingly as addressed
n Remark 1. Otherwise, it needs to be estimated online. It can be
stimated through unsupervised learning of the data; see algorithm
 given below. The idea is to approximate a constant value for it as
ollows:

 = min
j ∈{1,2,...,mL}

(
dj (T, L)

)
(12)
Fig. 5. Rank of dj , corresponding to Figs. 1 and 2.

where

L = argmax
s

|Ss| (13)

dj (T, L) = Tthmin
m ∈

{
1, 2, . . .,  mp

}
p ∈

{
1, 2, . . .,  n

}
, p /= L

d
(

xL
j , xp

m

)
(14)

where L represents the source containing the largest number of

data-points, Tthmin
m,p s.t.G

d
(

xL
j
, xp

m

)
gives the Tth smallest value of the

Euler distance d
(

xL
j
, xp

m

)
between data-points xL

j
and xp

m in the

parameter space for any m,  p satisfying condition G.
Parameter T, which specifies one of the middle neighbors to

calculate its distance to the underlying data-point as an average
estimate of the “neighbor radius”, does not need to be specified
precisely. One rule of thumb is to determine T between max

( ni
10 , 2

)
and ni

2 , e.g., ni/5 or just a constant value 5. For instance (T = 5), the
rank of dj as defined in Step 2 of Algorithm 3 for the dataset given
in Figs. 1 and 2 is given in Fig. 5. As shown, the resulting minimum
dj (T, L) is roughly 6.6.

It is possible that all the data-points are clutter in the scenario
or, conversely, are from a single target. In the former case, the data-
points are uniformly distributed over the whole scene while in the
latter, they are centralized to one center. If the NR parameter ε is

available, it will be easy to identify them, as very few data-points
can be clustered in the former case while almost all the data-points
will be clustered to one in the latter case. If the parameter ε is not
given, their difference can be determined by the rank distribution
of the neighbor radius as defined in (14). The variance of dj in the



omputing 60 (2017) 436–446 441

l
c
A
S

S

S

3

t
c
l

m

t

P

a

a
l
c
i
r
t
i
u

a
d
a
h
t
p
t
h
a
i
m
t
B
s

a
p
t
w
o
t
n
r
t

Table 1
Computing time of different clustering methods (s).
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atter case ought to be significantly larger than that in the former
ase.
lgorithm 3 Estimating the NR parameter ε
tep 1 Identify the source L that contains the most

data-pointsL  = argmax
i

|Si|.

tep 2 Calculate the distances of each data-point of SL to its T
nearest data-points from the other sources, denoting the
largest of them as dj, j = 1, 2, . . ., |SL |;

tep 3 Rank dj for all data-points from SL , obtaining the minimum
value min

j
dj which can be estimated as the required ε.

.3. Further discussion

Denoting the state-mean and (co)variance of the detections in
he same cluster as mi and Pi, i = 1, . . . n respectively, where i indi-
ates different sources, the cluster center can be given by the best
inear unbiased estimator as follows

fused =

n∑
i=1

P−1
i mi

n∑
i=1

P−1
i

(15)

If all these detections are subject to the Gaussian distribution,
he final target state-estimate is also Gaussian and its variance is

fused =
(

n∑
i=1

P−1
i

)−1

(16)

Clearly, Pfused < Pi, ∀ i = 1, . . . n which indicates that the clustering
lgorithm promises a more accurate estimate than the original data.

We note that clutter may  still be scattered in the cluster even
fter the density–based clustering, which will deactivate (16). As
ong as the clutter is uniformly distributed over the scenario, the
lutter distribution in the cluster area will be still loosely central-
zed around the mean of the cluster, and the estimate given by (15)
emains unbiased, that is, centralized around the real position of
he target. In other words, even clutter may  be unexpectedly taken
nto account in the cluster, it may  not deflect the cluster. This allows
s not to strictly follow the CL constraint.

However, if the clutter is not uniformly distributed in the cluster
rea, e.g., clutter depends on the real detections, or if the real target
etection is biased (i.e., the observation noise is not zero-mean and
ssumption A.2 is violated), the above unbiasedness claim will not
old. We  omit these complicated cases in this paper but we iterate
hat the density based clustering scheme, which serves as the pre-
rocessing step of our approach to remove clutter, has the strength
o discover clusters with an arbitrary shape, and the efficiency to
andle clutter. Further on, more advanced density-based clustering
pproaches can be employed. For example, the study done in [15]
mproved DBSCAN to cluster data with dense adjacent clusters. The

ethod of OPTICS (ordering points to identify the clustering struc-
ure) [18] extends the idea of DBSCAN to data of varying density.
oth methods can be useful to our approach, especially for large
cale problems or when the sensors are non-homogeneous.

While the present clustering approach does not make direct
ssumption about the target dynamics for accommodating poor a
riori information, we note that available target motion informa-
ion, if any, should be used to improve the clustering. For example,
hen the number of targets is known to be varying insignificantly
ver time, the estimated number of targets in the preceding itera-
ion can be used in the next iteration as a reference of the potential
umber of clusters. Moreover, if the target moving speed (and turn
ate) is known to be nearly constant, it shall also be used in a way
o initialize the potential cluster centres at each iteration by prop-
k-means DBSCAN 2 DBSCAN 6 Multi-source n-points

Fig. 6 0.0075 0.0156 0.0119 0.0436
Fig. 7 0.0136 0.0422 0.0399 0.0834

agating the cluster centres obtained in the preceding iteration to
speed up the clustering search.

4. Demonstration and evaluation

Although existing approaches offer no explicit mechanism to
deal with the multi-source CL constraint, we  can still implement
the popular DBSCAN and k-means method in their best possible
parameter setting for an illustrative comparison with the proposed
multi-source n-points clustering.

4.1. Given NR parameter ε

In our clustering method, NR parameter ε = 10 is two  times the
standard deviation of the observation noise. Parameter k = 6 is used
for the k-means clustering, which puts its performance into the best
possible situation in our case. The DBSCAN algorithm needs two
parameters ε and m.  Parameter ε gives the neighborhood radius
and is therefore set as ε = 10. Parameter m gives the minimum num-
ber of points in a neighborhood for its inclusion in a cluster; two
different values m = 2, 4 are adopted. The simulation results for the
data size n = 20, 50 are given in Figs. 6 and 7 respectively. The col-
ors of the circles (which represent different clusters) are assigned
randomly in each run and are independent of the color of the data-
points, which indicates the true clusters for different targets. The
results show a significant advantage of our approach over the other
methods that are unable to deal with overlapping clusters. Particu-
larly, the basic k-means method suffers from clutter (outliers) most.
However, we  note that advanced k-means such as the MPCK-means
algorithm [14] may  be employed to deal with constraints, which is
still inefficient to handle clutter, and so we did not investigate their
efforts.

The average computing time of different clustering methods
over 100 trials is provided in Table 1 for the datasets given in
Figs. 6 and 7. It shows that the proposed clustering is somewhat
slower than the others but is still quite fast, considering that the CL
constraint has been fully satisfied.

4.2. Unknown NR parameter ε

Based on the same dataset as that given in the last section, we
assume that NR parameter ε is unknown, which has to be learned
online through Algorithm 3 from the dataset. The upper and bot-
tom sub-figures of Fig. 8 give the distribution of dj for the dataset
shown in Fig. 6 (n = 20) and 7 (n = 50) respectively, which is obtained
at a very fast computational speed (which costs 0.0013 and 0.0025 s
respectively for each run in the Matlab platform). The outcomes for
estimating NR parameter ε are approximately 6.6 and 4.6 respec-
tively. Based on this, the clustering results yielded by our proposed
approach are given in Fig. 9. The estimated parameters are shown
to be suitable in that they enable good clustering results, which is
very close to the results shown in Figs. 6 and 7. To quantitatively
compare with the results shown in the last section, we employ the

average purity of clusters defined as follows:

AP = 1
k

k∑
i=1

|Cd
i
|

|Ci|
× 100% (17)
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Fig. 6. Outcomes of different clustering methods on dataset from 20 i.i.d sources.

Fig. 7. Outcomes of different clustering methods on dataset from 50 i.i.d sources.
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Fig. 8. Rank of dj , w.r.t. Figs. 6 (upper) and 7 (bottom) respectively.

Fig. 9. Clustering results using estimated NR parameter ε w.r.t. Figs. 6 (upper) and
7 (bottom) respectively.

Table 2
Average purity of the multi-source n-points clustering method (%).

Known NR parameter Online learned NR

w
t

m
i
b
a
o

Fig. 10. Trajectories of targets with fully unknown movement.
ε = 10 parameter ε

Fig. 6/Fig. 9(upper) 95 90.8
Fig. 7/Fig. 9(bottom) 96.3 93

here k is the number of clusters, |Cd
i
| is the number of data-points

hat correspond to the same target i.
The average purity of clusters provides a simple and transparent

easure for cluster evaluation. For the two cases as given in Table 2,

t shows that the performance of the multi-source n-points clusters
ased on online learned parameter ε performs closely to that using

 NR parameter ε properly specified a priori, but at the expense
f slightly more computation. This demonstrates that the online
learning procedure for NR parameter ε given in Algorithm 3 is both
effective and computationally efficient.

4.3. Clustering-based MODE

In this simulation, we consider applying the proposed cluster-
ing for massive sensor MODE in a challenging scene in which the
target motion model and system noises are completely unknown
and are highly time varying. For instance, massive cameras are set
up to monitor an indoor room. The information available is only
from the observations, which include the pixel position identified
on the frames/images (by using some image processing technolo-
gies, which are beyond the scope of this paper) that are extracted
from the real-time video stream. We  need to identify the observa-
tions that are from the same target and extract their distribution
mean in the state space as the estimate of the target position.

The targets can appear and disappear anywhere and/or anytime
in the scene, whether jointly, adjacently or solitarily, and they may
split, merge or cross each other, just to name a few possibilities.
Few traditional filter-based estimators that rely heavily on tar-
get dynamic modelling are capable of handling such challenging
unknown scenarios. However, we  can still apply cluster analysis
on the i.i.d. observations received from massive sensors, given that
the observations are mapped into the same coordinate.

The ground truth of the trajectories of these targets over the
view region [−100,100] × [−100,100] is given in Fig. 10, with the
starting and ending times of each trajectory noted. These targets
start at different times and exist for different lengths, as shown in
Fig. 11. Clutter is uniformly distributed over different regions with
an average rate of r = 10 false data-points per scan. For simulation
only, the observation noises are set as mutually independent zero-
mean Gaussian with variance 5. To note, both the clutter density
and the observation noises are unknown to our clustering method.
Significantly different from our simulation presented in [38] which
utilizes a parameter ε properly given a priori, Algorithm 3 is used
to learn the parameter ε from the dataset.

The center of each cluster obtained by our approach is given
as the estimate of the target position. The optimal sub-pattern

assignment (OSPA) metric [44] is used to evaluate the esti-
mation accuracy. For finite subsets X = {x1, x2, . . .,  xm} and Y =
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Fig. 11. Trajectories of targets in x − y dimension separately.
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Fig. 13. Observation reports (green “x”) of 10 sensors and their clustered results
(different color “o”, “�” or “♦”), true target positions (black “.”) and estimates (red
“+”) at time t = 16. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 12. Online learned NR parameter ε against time.

y1, y2, . . .,  yn} where m,  n ∈ N0 =
{

0, 1, 2, . . .
}

, the OSPA metric
f order p between X and Y is defined as (if m ≤ n)

¯ (c)
p (X, Y) =

(
1
n

(
min

q ∈ �n

m∑
i=1

d(c)
(

xi, yq(i)

)p + cp (n − m)

)) 1
p

(18)

here d(c) (x, y) = min (c, d (x, y)), the cut off value c > 0 and d (x, y)
s the Euler distance. d̄(c)

p (X, Y) = d̄(c)
p (Y, X) if m ≥ n and d̄(c)

p (X, Y) =
 if m = n = 0.

The order parameter p determines the sensitivity to outliers, and
he cut-off parameter c determines the relative weighting of the
enalties assigned to cardinality and localization errors. Clearly, a
etter target detection capacity that renders more accurate estima-
ion of the target number will significantly reduce the OSPA metric.
he parameters used are c = 100, p = 2.

First, we use ten sensors. The learned NR parameter ε against
ime is given in Fig. 12, which shows that the obtained estimate
s roughly between 4.5 and 9 (different from [38] which used the
efault ε = 10). Correspondingly, estimates from ten sensors, true

arget positions and the mean estimates given by each obtained
lusters are respectively given in Fig. 13 for t = 16. The average
f the estimated number of targets and the mean OSPA over 100
onte Carlo runs are given in Fig. 14. The average OSPA over 100

teps × 100 MC  runs is 10.77, which is arguably a very good result
Fig. 14. Mean estimated number of targets and mean OSPA over 100 Monte Carlo
trials.

with regard to the cutoff parameter c = 100 and order parameter
p = 2 used for OSPA and fully unknown tracking background.

Fig. 15 gives all the estimates from 100 sensors, the true state
positions and the mean estimates from clusters for time t = 16. This
clearly shows that the estimate of the real targets can be better
distinguished statistically from the false alarms when the num-
ber of sensors used is large, compared with the results of Fig. 13.
Fig. 16 gives the mean OSPA and the mean processing time, both
against the number of sensors used. The results show that with an
increase in the number of sensors, the proposed clustering will get
a more accurate state estimation, which is consistent with the anal-
ysis given in (16). This, however, comes at the cost of proportionally
increasing processing time, as its computation is linearly propor-
tional to the size of the dataset. This demonstrates again that the
proposed clustering method is qualified to serve independently as
a reliable and accurate filter-free MODE estimator with the use of

massive sensors in the challenging time-varying cluttered environ-
ment of unknown statistics about the targets, the clutter and even
the sensors. Its estimation accuracy increases statistically with the
increase of the number of sensors.
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Fig. 15. Observation reports (green “x”) of 100 sensors and their clustered results
(different color “o”, “�” or “♦”), true target positions (black “.”) and estimates (red
“+”) at time t = 16. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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ig. 16. Mean OSPA of 100 steps × 100 MC runs and mean processing time of 100
teps against different numbers of sensors used.

Furthermore, we employed 10 sensors with different clutter
ates averaging from 0 (that is, no clutter is generated at each sen-
or) to 20 per scan for each sensor. The mean OSPA and processing
ime of our approach, which are given in Fig. 17, show, unsur-
risingly, that with the increase of the clutter rate, the algorithm
onsumes more processing time and yields a worse estimation.

ith a very high clutter rate 20 per scan, the average OSPA is 23.94.
e note that high clutter rate is a threat to any target detection

lgorithm and our approach is not an exception.

. Conclusion

We  have investigated a multi-source homogeneous data clus-
ering model which poses “cannot- link” (CL) constraints on the
ata from the same source. The dataset may  be affected by a high

evel of clutter, misdetection and the number of potential clusters

s unknown. In our approach, the first/coarser level clustering is
ased on density for fast computing, while the second/finer level

s based on CL constrained distance to partition closely connected
lusters. In addition, an online learning procedure is proposed
or parameter estimation, thus allowing the clustering method to
Fig. 17. Mean OSPA of 100 steps × 100 MC  runs and mean processing time of 100
steps against different clutter rates.

be fully available without manual parameter setting in advance.
This is highly preferable for challenging target detection environ-
ments with very little prior information about the background and
the sensors. Simulations including synthetic data and challeng-
ing multi-sensor multi-target detection applications demonstrate
the validity and efficiency of the present clustering method for
multi-target detection in challenging cluttered environments. The
clustering approach has shown consistent performance for fusing
multi-sensor data as that its estimate accuracy will increase with
the increase of the number of sensors. This is superior to many
model-based approaches for which the inevitable model error will
limit the gain yielded by using more data.

Future work will extend the proposed multi-source n-point
clustering method for time series sensor data streams as well as
heterogeneous and asynchronous sensor data.
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