

Constructing autonomous distributed systems using
CBR-BDI agents

M. G. Bedia and J. M. Corchado

Departamento de Informática y Automática
University of Salamanca

Plaza de la Merced s/n, 37008, Salamanca, Spain
Email: corchado@usal.es

http://tejo.usal.es/~corchado/

Abstract: This chapter introduces a robust mathematical formalism for the
definition of deliberative agents implemented using a case-based reasoning
system. The concept behind deliberative agents is introduced and the case-based
reasoning model is described using this analytical formalism. Variational
calculus is introduced in this chapter to facilitate to the agents the planning and
replanning of their intentions in execution time, so they can react to
environmental changes in real time. A variational calculus based planner for
constructing deliberative agents is the presented and compared with other
planners. Reflecting the continuous development in the tourism industry as it
adapts to new technology, the chapter includes the formalisation of an agent
developed to assist potential tourists in the organisation of their holidays and to
enable them to modify their schedules on the move using wireless
communication systems.

1 Introduction

Technological evolution in today’s world is fast and constant. Successful knowledge
engineering systems should have the capacity to adapt at and should be provided with
mechanisms that allow them to decide what to do according to their objectives. Such
systems are known as autonomous or intelligent agents [28]. This chapter shows how
a deliberative agent with a BDI (Believe, Desire and Intention) architecture can use a
case-based reasoning (CBR) system to generate its plans. A robust analytical notation
is introduced to facilitate the definition and integration of BDI agents with CBR
systems. The chapter also shows how variational calculus can be used to automate the
planning and replanning process of such agents in execution time.

Agents should be autonomous, reactive, pro-active, sociable and have learning
capacity. They must be able to answer to events that take place in their environment,
take the initiative according to their goals, interact with other agents (even human)
and use past experiences to achieve present goals. There are different types of agents
and they can be classified in different ways [28]. One type, the so-called deliberative
agent with BDI - Belief, Desire and Intention - architecture, uses the three attitudes in
order to make decisions on what to do and how to get it [16, 28]: their beliefs

represent their information state - what the agents know about themselves and their
environment; their desires are their motivation state - what they are trying to attain;
and the intentions represent the agents’ deliberative state. Intentions are sequences
(ordered sets) of beliefs (also identified as plans). These mental attitudes determine
the agent’s behavior and are critical if a proper performance is to be produced when
information about a problem is scarce [2,17]. BDI architecture has the advantage that
it is intuitive - it is relatively easy to recognize the process of decision-making and
how to perform it. Moreover, it is easy to understand the notions of belief, desires and
intentions. On the other hand, its main drawback lies in determining a mechanism,
which will allow its effective implementation. The formalization and implementation
of BDI agents constitutes the research of many scientists [9, 16, 24]. Some of these
researchers criticize the necessity of studying multi-modal logic for the formalization
and construction of such agents, because they haven’t been completely acclimatized
and they aren’t computationally efficient. Rao and Georgeff [22] assert that the
problem lies in the great difference between the powerful logic of BDI systems and
with that required by practical systems. Another problem is that these types of agents
don’t have learning capacity - a necessary element for them since they have to be
constantly adding, modifying or eliminating beliefs, desires and intentions.

This chapter presents a robust analytical formalization for the definition of
computationally efficient agents, which solves the first of the previously mentioned
problems. This chapter also shows how a BDI agent implemented using a case-based
reasoning (CBR) system can substantially solve the problems related to the learning
capability of the agents. Implementing agents in the form of CBR systems facilitate
their learning and adaptation. If the proper correspondence between the three mental
attitudes of the BDI agents and the information that a case-based reasoning system
manipulates can be established, an agent will be created not only with beliefs, desires,
intention but also with learning capacity.

Although the relationship between agents and CBR systems have been investigated
by other researchers [19, 21, 27], we propose a robust mathematical formalism, that
will facilitate the efficient implementation of an agent in the form of a CBR system.
Variational calculus is introduced to automate the reasoning cycle of the BDI agents,
it is used during the retrieval stage of the CBR cycle to guaranty an efficient planning
and replanning in execution time. Although different types of planning mechanism
can be found in the literature [3, 11, 15, 18, 25], none of them allow the replanning in
execution time, and agents inhabit changing environment in which replanning in
execution time is required if goals have to be achieved successfully in real-time.
Some of the approaches developed use planning techniques to select the appropriate
solution to a given problem but without mechanisms to deal with the changes on the
environment. For instance, in [11, 18] it is introduces a kind of plan schemas that
need to be reprogrammed overtime, when the planning domain changes. In [4, 7, 8] it
is proposed an architecture that tries to be more flexible by using planning strategies
to create the plans. If new information must to be introduced from the environment to
the system, it is only necessary to change the planning domain instead of
reprogramming the plan schema by hand. This architecture allows building plans that
contain steps with no detailed information. This is useful because if no specific
information is supplied, the solution can handle planning generic operators, plans that

are not influenced by unexpected changes. Now to know if the abstract proposed plan
is adequate it is required to put it into practice in a real domain.

This operation requires a high amount of computational time and resources which
may be a disadvantage, in for example, web related problems. The flexibility of this
approach increases the time spent in applying the abstract solution to the real
problem, which is a handicap for real time systems. In this chapter it is proposed a
solution, a variational calculus based planner (VCBP) that deals adequately with
environmental real-time problem changes without applying a reprogramming strategy
and without the disadvantages shown in [4, 7, 8] because the technique used can solve
a planning problem in execution time. This is achieved using variational calculus
during the retrieval stage of the CBR life cycle. To begin with, the chapter will review
the concepts of CBR system and deliberative agent using an analytical notation. Then
it will be shown how a CBR system is used to operate the mental attitudes of a
deliberative BDI agent. This section also shows the relationship between BDI agents
and CBR systems. Then variational calculus will be introduced, and will be shown
how it can be used to define agents with the previously mentioned characteristics.

2 Case-based reasoning systems

Case-based reasoning is used to solve new problems by adapting solutions that were
used to solve previous similar problems [1, 10, 26]. The operation of a CBR system
involves the adaptation of old solutions to match new experiences, using past cases to
explain new situations, using previous experience to formulate new solutions, or
reasoning from precedents to interpret a similar situation. A case is the basic
knowledge representation structure. Figure 1 shows the reasoning cycle of a typical
CBR system that includes four steps that are cyclically carried out in a sequenced
way: retrieve, reuse, revise, and retain [1, 26].

Target Problem Case

Case Base

RETRIEVE

Retrieved
Case

REUSE

Proposed solutionREVISE

Final solution

RETAIN

Error

Fig. 1: CBR Cycle of Life

During the retrieval phase, those cases that are most similar to the problem case are
recovered from the case-base. The recovered cases are adapted to generate a possible
solution during the reuse stage. The solution is then reviewed and, if appropriate, a
new case is created and stored during the retention stage, within the memory.

Therefore CBR systems update (with every retention step) their case-bases and
consequently evolve with their environment. Each of the reasoning steps of a CBR
system can be automated, which implies that the whole reasoning process could be
automated to a certain extend [10, 13]. This assumption has led us to the hypothesis
that agents implemented using CBR systems could be able to reason autonomously
and therefore to adapt themselves to environmental changes. Agents may then use the
reasoning cycle of CBR systems to generate their plans.

Based on the automation capabilities of CBR systems we have established a
relationship between cases, the CBR life cycle, and the mental attitudes of the BDI
agents. Based on this idea, a model is presented that facilitates the implementation of
the BDI agents using the reasoning cycle of a CBR system.

3 Implementing Deliberative Agents using CBR Systems

This section identifies the relationships that can be established between BDI agents
and CBR systems, and shows how an agent can reason with the help of a case-based
reasoning system. The formalization presented in this chapter takes elements of other
knowledge engineering systems [11, 19], and adapts them to the model presented
here. Our proposal attempts to define a direct mapping between the agents and the
reasoning model, paying special attention to two characteristics: (i) the mapping
between the agents and the reasoning model should allow a direct implementation of
the agent and (ii) the final agents should be capable of learning and adapting to
environmental changes. An analytical notation has been introduced to facilitate an
efficient integration between the BDI agent and CBR system and that allows the use
of variational calculus for the planning and replanning in execution time. The notation
used in the refereed works [19, 21, 27] do not have the required degree of expressivity
and complexity to introduce differential calculus tools.

3.1 BDI Agents

The notation and the relationship between the components that characterise a BDI
agent are first introduced.

We denote Θ as the set that describes the agent environment, and Τ(Θ) as the set of
attributes {τ1, τ2,…,τn } in which the world is expressed.

Definition 1. A belief e on Θ is a m-upla of attributes of Τ(Θ) denoted as:
e=(τ1, τ2,…,τm) with m ≤ n. With these notation, we call set of beliefs on Θ and
denote ζ(Θ)={(τ1, τ2,…,τj) where j =(1,2,…, m ≤ n)}.

Example. It is supposed that the world Τ(Θ) includes all the attributes that are needed
to characterise a tourist schedule in the city of Salamanca (European city of the
Culture 2002), and we denote Τ(Θ)=monument name, τ2= time table, τ3= cost,..., τn }

In this world, a belief, for example, monument, is represented by a m-upla of
attributes of Τ(Θ) that characterise the monument and we denote:
Monument belief =(τ1=index, τ2=time table, τ3=visiting cost, τ4=quality)

A particular belief, for example, the old cathedral (OC), can be represented by:
Old Cathedral=(idx=OC, time table є (10:00, 18:00), visiting cost=3 €, quality=1.5)

Definition 2. The operator "Λ of accessibility" is introduced between m believes
(e1,e2,e3,…,em) where Λ (e1, e2, e3,…,em) = (e1 ∧ e2 ∧ … ∧ em) denotes that exists
compatibility among the set of believes (e1, e2, e3,…, em). If any of the believes is not
accessible, it will be denoted by Λ (e1, e2, e3,…,em) = 0.

Example. It is 12:00h. p.m. and the agent believes M1, M2 and D(A,A), which are
described bellow (see Table 1). With these believes and given that it is 12:00 h, it is
impossible to visit M1 and M2, and therefore the path (M1 ∧ D(A,A) ∧ M2) can not
be constructed and Λ (M1,D(A,A), M2)=0.

Table 1. Values of believes M1, M2 and D(A,A)

Attribute Value Attribute Value Attribute value
Entity M1 Entity M2 Entity D(A,A)
Class monument Class monument Class travel by taxi
Time open 10-13 hrs. Time open 10-14 hrs. Time 1 hr.
Costs 6 € Costs 6 € Costs 12 €
Time for a visit 1 hr. Time for a visit 1 hr.
Zone or place A Zone or place A

Table 2. Values of belief M3

Attribute Value
Entity M2
Class monument
Time open 10-14 hrs.
Costs 6 €
Time for a visit 1 hr.
Zone or place A

If M2 is substituted by M3 (see Table 2) then (M1 ∧ D(A,A) ∧ M3) is possible, and
Λ (M1,D(A,A),M2)≠ 0, which means that the agent has identified that we can visit
the monument M1 and M3, taking into consideration that the time to go from the first
to the second monument is given by D(A,A).

Definition 3. An intention i on Θ is a s-upla i=(e1, e2,…,es) of compatible beliefs,
withΛ (ei, ej)≠0. We denote Ι(Θ)={ i=(e1, e2, …, ek) } the set of intentions on Θ.

Now a set of parameters will be associated to the space Ι(Θ) that characterizes any
element of that set. The set of necessary and sufficient variables to describe the
system may be obtained experimentally.

Definition 4. We call canonical variables of a set Ι(Θ) to any set of linearly
independent parameters אל=(A1, A2,..., Av) that characterize the elements i∈ Ι(Θ).

Example. If the agent identifies a visiting route through the number of monument to
visit (P) and a maximum associated cost (C), and we express it as אל=(A1,A2)=(P, C).

In this coordenates system the intention i1 is expressed as:
i1=M1 ∧ D(A,A) ∧ M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ D(B,B) ∧ R2
with the values represented in Table 3. It also has the values for P and C indicated.

Table 3. Values of the believes that constitute intention i1 and values for (P,C) associated

Schedule
(hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22 Attributes

intention M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2 P 3

Costs(€) 6 0 6 0 12 0 0 0 12 C(€) 36

Time (hr) 1 1 1 1 2 2 2 1 1
Quality 1 -- 2 -- 1 -- 2 -- 2

Definition 5. A desire d on Θ is a mapping between

d : I(Θ) → Ω (אל)
 i =(e1 ∧ … ∧ er,) � F(A1, A2,...., Av)

where Ω (אל) is the set of mappings on אל. A desire d may be achieved constructing an
intention i using some of the available beliefs, whose output could be evaluated in
terms of the desired goals. We call set of desires on Θ and denote D(Θ) to the set:
D(Θ)={d: I(Θ)� Ω (אל)/ with I(Θ), set of intentions and Ω (אל) set of mappings on אל}

Example. The desire function of a tourist “I want to visit at least three monuments and
spend less than 50€”, may be expressed as:

�
�
�

≤
≥

==
50
3

),(),(21 C
P

CPFAAF with
�
�
�

∈
∈

)100,0(
)10,0(

C
P

Now, after presenting our definition of the agent’s belief, desire and intention,
section 3.2 defines the proposed analytical formalism for the CBR system.

3.2 Analytical formalism of Case-based Reasoning systems

The necessary notation to characterise a CBR system is introduced as follows. Let us
consider a problem P, for which it is desired to obtain the solution S(P). The goal of a
case-based reasoning system is to associate a solution S(P) to a new problem P, by
reusing the solution S(P´) of a memorised problem P´.

A problem P is denoted as P=(Si,{ θj }, Sf) with Si=initial state, Sf=final state and
j=(1,…,m). Its solution S(P) is defined as S(P)={Sk, θh} where k=(1,..,n+1) and
hl=(1,..,n ≤ m) , S1=Si and Sn+1= Sf .

Definition 6. The state Sk and the operator θj are defined as

Sk = �
�

�

�

�
�

�

�

=

=

qss

prr

R

O

,...,1

,...,1

}{

}{
 θj : Sk= ��

�

�
��
�

�

}{
}{

s

r

R
O

 → θj (Sk)= ��
�

�
��
�

�

}'{
}'{

s

r

R
O

where {Or }r=1,…,p and {Rs }s=1,…,q are coordinates in which a state Sk is expressed.

The coordinates type {Or }r=1,…,p are introduced to express the objectives achieved
and the coordinates type {Rs }s=1,…,q are introduced to express the resources lost.

Through these definitions, the parameter effectiveness, ℑ , between two states S and
S’ can be defined, as a vector ℑ (S, S’) = (ℑ x, ℑ y) which takes the form

max
)()'(

r

rr
x O

SOSO −
=ℑ

max
)'()(

s

ss
y R

SRSR −
=ℑ

where the definition implies that (0≤ ℑ x≤1) and (0≤ ℑ y≤1).

In order to evaluate the rate of objectives achieved and resources used, between S
and S’, it is necessary to normalise every component of {Or }r=(1,…,p), {Rs }s=(1,…,q)

22

2

2

2

1

1

22

2

22

2

1

11

max
max

...
max
max

max
max

max
'

...
max

'
max

'

�
�

�

�

�
�

�

�
++��

�

�
��
�

�
+��

�

�
��
�

�

�
�

�

�

�
�

�

� −
++��

�

�
��
�

� −+��
�

�
��
�

� −

=ℑ

p

p

p

pp

x

O
O

O
O

O
O

O
OO

O
OO

O
OO

22

2

2

2

1

1

22

2

22

2

1

11

max
max

...
max
max

max
max

max
'

...
max

'
max

'

�
�

�

�

�
�

�

�
++��

�

�
��
�

�
+��

�

�
��
�

�

�
�

�

�

�
�

�

� −
++��

�

�
��
�

� −
+��

�

�
��
�

� −

=ℑ

q

q

q

qq

y

R
R

R
R

R
R

R
RR

R
RR

R
RR

Definition 7. A new parameter is also introduced - efficiency - that measures how
many resources are needed to achieve an objective. Given a target problem P, and a
solution S(P), let us say that the efficiency of the solution S(P), is obtained by:
ζ[S(P)]= ℑ x / ℑ y . The definition implies that ζ (S,S’)∈ (0, ∞)

Definition 8. A case C is a 3-upla {P, S(P), ℑ [S(P)]} where P is a problem
description, S(P) the solution of P and ℑ [S(P)] the effectiveness parameter of the
solution. Then we can define a CBR´s case base as a finite set of cases memorized by
the system denoted by CB={Ck / k=(1,...,q) }.

3.3 Integration of the CBR system within the BDI Agent

The relationship between CBR systems and BDI agents can be established,
associating the beliefs, desires and intentions with cases. Using this relationship we
can implement agents (conceptual level) using CBR systems (implementation level).

So once the beliefs, desires and intentions of an agent are identified, they can be
mapped onto a CBR system.

First, a mapping is introduced that associates an index to a given case Ck.

idx:CB� I(BC)
 C � idx(C)= idx{P, S(P), ℑ [S(P)]}= { idx (SI), idx (SF) }=

= { [SI =(O1,a1), (O2,a2),...,(Op, ap), (R1,b1), (R2,b2),...., (Rq, bq)],
 [SF=(O’1,c1),(O’2,c2),..,(O’p, cp),(R’1,d1),(R’2,d2),..,(R’q,dq)] }.

where the set I(BC) is the set of indices of a case base CB that is represented by
frames composed of conjunction of attributes Oj, Rk є T(BC) and values ai, bj, ck, dl of
the domain.

The abstraction realized through the indexing process allows the introduction of an
order relation R in the CB that can be used to compare cases. Indices are organized in
the form of a Subsumption Hierarchy.

(CB, R)={ [Ck / k=(1,..,q) and q є IN], R}={ (C1 , .., Cq)/ idx(C1) ⊆ … ⊆ idx(Cq) }

Definition 9. Let us say that two cases C and C’∈ CB fulfill the relation

)'()(CidxCidx ⊆ if
)'()(

)'()(

FF

II

SidxSidx
SidxSidx

⊇
⊆

If it is expressed in terms of their components,

�
�
�

≤
≥

→⊆
)'()(
)'()(

)'()(
IsIs

IrIr
II SRSR

SOSO
SidxSidx

�
�
�

=∀
=∀

qs
pr

�

�

,1
,1

�
�
�

≥
≤

→⊇
)'()(
)'()(

)'()(
FsFs

FrFr
FF SRSR

SOSO
SidxSidx

�
�
�

=∀
=∀

qs
pr

,,1
,,1

�

�

Then, we say that S(P’) is a possible CBR solution of the target P, if

∀ C’= (P’ , S(P’), ℑ [S(P’)]) / idx(C’) ⊇ P

Example.Given three cases, C1, C2, C3, and their indexes, where the initial states are
null:
idx(C1)={(O’1,a1), (R’1,b1), (R’2, b2)}= {(O’1,1.7), (R’1,95), (R’2, 21.6)}
idx(C2)={(O’1,a1), (R’1,b1), (R’2, b2)}= {(O’1,1.1), (R’1,80), (R’2, 19.2)}
idx(C3)={(O’1,a1), (R’1,b1), (R’2, b2)}= {(O’1,0.9), (R’1,100), (R’2, 22)}
If the problem to solve may be represented by P=(SI, SF) where its solution satisfy,

�
�
�

≤
≥

=
,105'

1'
)(

1

1

R
O

PS
�
�
�

≤ 25' 2R

the relationship idx(C3)⊆ P⊆ idx(C1), idx(C2) may be established. So the definitions
presented above let us know that idx(C3) is not a possible CBR solution of the target
P, while idx(C1), idx(C2) are possible CBR solution for the problem P.

Definition 10. We use state ς of an intentional process {e1 ∧ e2 ∧ … ∧ es-1 ∧ es } to
describe any of the situations intermediate to the solution {e1 ∧ e2 ∧ … ∧ er, with r≤s}
that admit a representation over אל=(A1, A2,…,Av).

Definition 11. Given a canonical coordenates system (A1, A2,…,Av) in I(Θ), the set
may be reordered, and we denote אל= {Fm} ∪ {Gn} and m+n=v, where:
{Fm}= {Aj with j≤ v / Aj growing} and {Gn}= {Ak with k≤ v / Ak decreasing}.

Giving an i∈ I(Θ), a functional dependence relationship may be obtained in terms
of the attributes, i=i(τ1, τ2,…,τn), and in terms of its canonical or state variables,
i=i(A1, A2,…,Av)= i(F1, F2,…,Fm, G1, G2,…,Gn) which determines a functional
relationship of the type Aj = Aj(τ1, τ2,…,τn)

Now the fundamental relationship between the BDI agents and the CBR systems
can be introduced.

The solution S(P) for a given problem P=(SI,{θj},SF) can be seen as a sequence of
states Sk=({Or}r=1, …,p , ({Rs}s=1,…,q) interrelated by operators {Sk, θh}.

Given a BDI agent over Θ with a canonical system, אל=(A1, A2,..., Av) in the set
I(Θ) that may be reordered as אל =(F1, F2,…,Fm, G1, G2,…,Gn).

If we establish the relationship between the set of parameters,

{Fm} ←→ {Or}
{Gn} ←→ {Rs}

an identification criteria may be established among the interrelated states, ςi∈ I(Θ),
and the CBR states, Sk∈ T(BC). Therefore a relationship may be established among
the agents desires I(Θ) and the effectiveness operator ℑ [S(P)] of the CBR system.

Then the mathematical formalization proposed can be used as a common language
between agents and CBR system and solves the integration problem.

Example: If we consider now two possible routes i1 and i2, together with their values,
presented in Table 4.

i1= M1 ∧ D(A,A) ∧ M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ D(B,B) ∧ R2
i2= M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ Tx(B,A) ∧ M1 ∧ Tx(A,B) ∧ R2

Table 4. Values for the intentions i1 and i2

Schedule (hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22
intention M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2

Costs(€) 6 0 6 0 12 0 0 0 12
Time (hr) 1 1 1 1 2 2 2 1 1
Quality 1 -- 2 -- 1 -- 2 -- 2

Schedule (hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22
intention M2 D(A,A) R1 D(A,B) M3 Tx(B,A) M1 Tx(A,B) R2

Costs(€) 6 0 12 0 0 3 12 3 12
Time (hr) 1 1 2 2 2 1 1 1 1
Quality 2 -- 1 -- 2 -- 1 -- 2

If our coordenates system is represented by אל=(A1, A2, A3, A4) =(P, T, C, Q)
where P=Places visited, T=Time spent in the visit, C=Cost of the visit, Q= Quality
(visit satisfaction) then the previously presented intentions can be expressed as,

i1--> P=3, T=12 (h), C=36(€), Q=1.6 i2 --> P =3, T=12 (h), C=48(€), Q=2

Each intention may be considered as a case, with an associated index, and
represented by the values P,T,C,Q

�
�
�

�
�
�

=
)12,36(
)6.1,3(

)1(Cidx
 �

�
�

�
�
�

=
)12,48(

)2,3()2(Cidx

If a problem P is presented to the agent in the following terms:

�
�
�

≤
≥

=
,12

3
)(

hT
P

PS
�
�
�

≤
≥

€50
5.1

C
Q

then idx(C1), idx(C2) are two possible CBR solutions because, given the previously
presented definition, P⊆ idx(C1), idx(C2).

The desire function

 d : I(Θ)→ Ω (ℵ)
 i =(e1 ∧ … ∧ er,) � F=F(i)= { P≥ 3, Q≥1.5, T≤ 12, C≤ 50 }

may be expressed in terms of ℑ (S(P)) = (ℑ x, ℑ y). For this example the values are
ℑ x = 0.412, where S(P) must achieve at least 41.2% of its objectives.
ℑ y= 0.790, where S(P) should not require more that 79% of the resources.

while the values of the efficiency parameters of cases idx(C1) and idx(C2) are:
ℑ x (C1)= 0.432, and ℑ y (C1)=0.738
ℑ x (C2) = 0.516, and ℑ y (C2)= 0.7754
The relationship, presented here, shows how deliberative agents with a BDI

architecture may use the reasoning cycle of a CBR system to generate solutions S(P).

When the agent needs to solve a problem, it uses its beliefs, desires and intentions
to obtain a solution. Previous desires, beliefs and intentions are stored taking the form
of cases and are retrieved depending on the desire to achieve. Cases are then adapted
to generate y proposed solution, which is the agent action plan. This initial solution is
reviewed and finally a learning process is carried out by adapting, deleting, etc. cases.

The following section shows how the retrieval stage can by automated using
variational calculus [12], which facilitate the agents replanning in execution-time.

4 Modelling dynamic CBR-BDI agents

The proposed analytical notation allows the definition of “CBR-BDI” agents. Such
knowledge engineering systems have the ability to plan their actions, to learn and to
evolve with the environment, since they use the reasoning process provided by the
CBR system. CBR systems may be implemented and automated in different ways [10,
13] depending on the problem to solve. This section shows how variational calculus
can be used during the retrieval stage of such agents to facilitate the planning and
replanning of their intentions in execution-time. Variational calculus is therefore used
in the framework of the CBR system to automate the retrieval stage, which gives the
agents more autonomy. In general variational calculus provides the optimum solution
(geodesical) to a problem [20]. Since we are using this mathematical formalism in a
discrete environment (cases: believes, desires and intentions), it will be used to obtain
the closest discrete solution to the optimal one [20].

4.1 Mathematical foundations: variational problems

Suppose a space m-dimensional Χ=(X1, X2,...,Xm) and a mapping on X, V(Χ), that is
defined as,

 V : T(BC) → T(BC)
(A1, A2,...Av) → V (A1, A2,...Av)

On the phase space, which is the set of all states of the process, the function V(X)
becomes an m-1dimensional surface that shows all possible relationships between the
parameters of V, that is denoted G (X1, X2,...,Xm) = 0.

Definition 12. Let us consider two points, ei and ef, that fulfil that: ei=(Xi1,Xi2,...,Xim)
holds G(ei)=0, and ef =(Xf1, Xf2,...,Xfm) holds G(ef)=0.
It is defined the set φ(ei,ef) ={ φ1(ei,ef), φ2(ei,ef), ..., φm(ei,ef) } where φj(ei,ef) are
possible curves between ei and ef that are allowed by V (X) on Χ=(X1, X2,...,Xm)) and
hold that ∀ φj(X1, X2,...,Xm) ∈ { φ(ei,ef) } it is satisfied G[φj(X1, X2,...,Xm)]=0 .

Given the set φ(ei,ef), variational calculus shows how the optimal curve
(geodesical) with respect to its length can be chosen automatically [12, 20].

Fig. 2. Possible paths between two points in a 3D space

If m=3 (see Figure 2) and we denote X = (X1, X2, X3) = (x, y, z), the following
definition may be included.

Definition 13. A functional A[y=y(x)] defined on a space F is a continuous mapping
of F into real numbers

A: Ω∞ (IR) → IR

y=y(x) → A[y=y(x)]

Ω ∞ (IR), set of
functions infinitely
differentiated on IR

If we have a functional A, we can demonstrate that the extreme solutions to this
functional are the functions y=y0 (x) such that δA[y(x)] =0. A functional A[y(x)] is
called integrable if its expression takes the form

A [y(x)]=]dx y´(x) y(x), x,(F [
 x2

 x1�

For these cases, it is known that a function y =y0 (x) is optimal for the functional
A[y(x)] if the Euler´s equation is satisfied [2].

A[y(x)] extremal ←→ δA[y(x)]=0 ←→ 0
 ´y

F
y
F =��

�

�
��
�

�

∂
∂−

∂
∂

dx
d

←→ y = y0(x)

Definition 14. Let us define on the surface G(x, y, z)=0 generated from V=V(x, y, z),
the notion of Euclidean distance that associates to each pair of points (ei,ef) a real
number D(ei , ef) obtained as

D (ei , ef) =) Z- (Z)Y - (Y)X - (X 2
fi

2
fi

2
fi ++ where ei =(Xi, Yi, Zi), ef =(Xf, Yf, Zf)

So the length of a curve is given by

L= [dl]
 x2

 x1� = � ++
 x2

 x1

222 dzdydx = dx� ++
 x2

 x1

22 z´(x)y´(x) 1

It is known that G(X, Y, Z)=0 implies constraints between y(x), z(x), and it defines
a pair of new coordinates (ρ,θ) that yields a new equation to be solved,

L= θθρ
θ

θ
d)(1 22

1
+� = L { θ, ρ(θ), ρ´(θ) }

an expression in which Euler´s equation may be applied because L, with the
previously shown dependence, is an integrable functional. A generalisation of Euler´s
equation exists valid for any number of parameters. In this case, the solution is
obtained solving an n-dimensional Euler´s system of differential equations.

4.2 Formalization of the integration of the CBR-BDI agents

The operations that are carried out during the reasoning process of the CBR system
are now defined, using the previously introduced notation and Variational Calculus.

Retrieval . During this phase, a problem P´ stored in the case base BC and that is
similar to the target problem P is identified.

Given the problems P and P’, it is said that P’ is "similar" to P and it is denoted
P’≈P, if the case C’= (P’, S(P’), ℑ [S(P’)])∈ CB, is a possible CBR solution and holds
idx(C’) ⊇ {idx(Ck) k=(1,...., n) }. So there is a set of possible solutions CBR that we
denote P⊆ idx(C1),…,idx(Cm).

Now we use the parameter efficiency ζ[S(P)], that indicates the amount of
resources that should be spent to achieve each objective. The cases for which the
efficiency is maximum are selected and denoted by ζ[S(P)]max, which is a subset of
the previously selected solutions:

P⊆ idx(C1), idx(C2), idx(C3),…, idx(Cr), with r ≤ m.
Now we need to identify which is the best case from this subset.

Example. Before to show how such case may be identified, a non-linearity effect in
the relationship between the cases with their attributes is introduced below. The visit
to a museum M2, with Q=1, may cost C=2€, while a museum M1 with Q=2, may be
visited for free (if there is a public program of cultural promotion).

To incorporate such non-linearity to the problem, all the non linear processes are
codified in the function V=V(A1,A2,...Av)≠0. The function V on אל= (A1,A2,...Av)
introduces constrains between such variables that can be graphically associated to
"curvature" on the phase space, such as the one represented in Figure 3.

In terms of our tourist agent, considering only אל=(A1, A2)=(P, C) and given a target
problem to solve defined by a Pminimum and a Cmaximum, Figure 3 may represent three
potential solutions ϕ1, ϕ2, ϕ3, assuming non-linearity effects.

 Fig. 3. Effects of no-linearity

Now it will be shown how variational calculus can be used to automate the
retrieval process. Let us consider a case base (CB, R)={[Ck / k=1,.,q and q є IN],R}
and the set of attributes of the case base Τ(BC)= (α1, α 2,,..., α m), α j, є T(BC).

Using the relationships between BDI agents and CBR systems established, it is
denoted Τ(BC)=(A1, A2,...Av), which allows us to define a function V on the space
I(Θ), that stores the information of all the cases Ck є CB.

V : T(BC) → T(BC)
 (A1, A2,...Av) → V (A1, A2,...Av)

If we consider two states (Si , Sf) initial and final, on the set I(Θ), the function V
shows all the intentions i є I(Θ), that joins both states (Si ,Sf) and that has related a
case Ck є CB. On the phase space, the function V=V(A1,A2,...Av) is translated onto a
surface Π0[A1,A2,...Av]=0, where the notion of Euclidean distance is defined.

In the m=3 case, and with A1=x, A2=y, A3 =z, the theory of variational calculus
says that a coordinate system (λ, µ) exists which allows an expression of the
functional F=F(λ, µ), that associates to each curve between Si and Sf on Π0[x,y,z]=0
with its length, thus we can obtain a solution of

0
 ́

FF =��
�

�
��
�

�

∂
∂−

∂
∂

µλµ d
d ; that we call µ=µ0(λ) and that takes the form χ0 = χ0[x,y,z]

on the original coordinates (x, y, z). This function is named the geodesical curve.
In the most general case, the mapping V=V(A1, A2,..., Am) generates curves that

cannot be differentiated because V only takes values at discrete points corresponding
to defined and stored cases.

Fig. 4. Optimum (geodesical) and closer to the optimum curve

Let us now define a mapping σ, as σ=(χ0 – ψ), where χ0 is the solution obtained by
Euler´s equation [20] and ψ є {φ(Si,Sf)} is a path between Si, and Sf, stored in the
case-base as a case C є CB (see Figure 4). Then we will call "the closest to the
optimal curve ψ0" the mapping of {φ(Si,Sf)} given by the minimisation of

I = []{ } dxdydz zy,x,
f

i
σ�

e

e

where ψ0 = { Si = S0
(0)

 , S1
(0), S2

(0), S3
(0), S4

(0),...., Sm
(0),, Ss

(0) = Sf }, and Sk are the
states obtained to achieve the solution.

So far it has been shown how variational calculus can be used to select the closest
to the optimum curve. Variational calculus may then be used to select and retrieve the
most appropriate case during the retrieval stage. The retrieved case is characterised
for been the one that, in each of its stages, maintains most constant the efficiency.

Adaptation. During the adaptation phase, the system executes a transformational
reasoning mechanism [1], that can be represented by the adaptation function A,

 A : (BC) x Σ (P) � C
 (C , P) � A [S(P’), P]= { P, A[S(P’)], ℑ (A[S(P’)])}

with P∈Σ (P) is called set of problems, and C=(P’,S(P’), ℑ ([S(P’)]).
In [5] it is suggested a retrieval mechanism that identifies a case easy to adapt.

Therefore the retrieval mechanism should be subordinate to the adaptation one. In our
proposal we assign higher relevance to the retrieval strategy. If P=(Si, Sf) and during
the retrieval stage it is obtained C'={P’,S(P’), ℑ [S(P’)]})∈ (BC), the adaptation
function constructs a solution for P maintaining the sequence of operators given by
S(P’). It at any point the sequence may not be applied, a new retrieval cycle is
initiated from the state in which the sequence was interrupted.

Therefore the adaptation function can be seen as a serie of operators, where each
operator is a part of a retrieved case, and we denote A= (αm•α m-1••α 2•α 1).

Compare with
other cases

Target Problem Case P = (SI , SF) Goal: Finding out a solution S(P) with ℑ [S(P)]

Case
base

B, D, I

New case to be reused
C’’= (P’’, S(P’’))

save

Retrieve
most
relevant
cases

Proposed case to be reused
C= (S’I, S’F, S(P’), ℑ [S(P’)])

K cases
Ck={SI,SF,S(Pk), ℑ [S(Pk)]

Applying
variational

calculus

Using
structures

BDI to
achieve a
solutionℑ [S(P)] ⊆ ℑ [S(P’’)]

Compare ℑ [S(P’’)]
with the initial

requested ℑ [S(P)]

Accepted solution
to the problem P

ℑ [S(P)] ⊄ ℑ [S(P’’)]

Fig. 5. Formal Model Detailed Schema

Figure 5 shows how variational calculus is applied during the retrieval stage to
select the closest to the optimum case from the case-base. In this figure it can also be
appreciated graphically the working and information flow during the reasoning
process of the agent, introduced this section.

Data
Source

Proposed solution

C (P’, S(P’)) � { id (ej) }

P’’ = (SI,S’’F)

S(P’’)=A[S(P’)]
ℑ [S(P’’)]

Intermediate
problem case
P=(Sk, SF)

Transformational

adaptation
mechanism

∀ i, j Λ(ei, ej) ≠ 0 ∃ k/Λ(ei, ej) = 0

Case
retrieved

Compare
with

stored
cases

Revise and Memorisation. In this phase the case solution generated in the previous
phase is evaluated and reviewed. A problem P occurs for which we want to obtain a
solution S(P) with ℑ [S(P)]. If the adaptation step ensures to the retrieved case, a
solution S(P)=A[S(P’)], the review must guarantee that: ℑ { A[S(P’)]}⊇ ℑ [S(P)]. The
problem target and the characteristics of the adapted solution can be memorized as a
new case, which may be denoted by C={P, A[S(P’)], ℑ (A[S(P’)])}=(P, S(P), ℑ [S(P)]).

4.3 Variational calculus based planner (VCBP)

This section shows how the variational calculus, introduced in the previous section,
allows the agents planning and replanning in execution-time because the proposed
Variational Calculus based Planner (VCBP) is used to select the most adequate case
during the retrieval phase of the reasoning process to solve a given problem.
Assuming that potentially significant changes can be determined after executing a
primitive action, it is possible to control the dynamism of the new events of the
domain and thus achieve an appropriate reconsideration of the problem [14, 16].

Fig. 6. 3D representation of a dynamic environment

If it is accepted that the environment changes, it is also necessary to define a
reasoning mechanism capable of dealing with such changes by modifying the initial
desires and intentions. Nevertheless the reasoning process may be maintain since the
problem general description remain constant. If at t0, the function V(x, y, z) takes the
form denoted by V0(x, y, z), at t1, V is denoted by V1(x, y, z), with the associated
surface Π1(x, y, z)=0 on the phases space, upon which it is possible to obtain the
optimal curve between two new points, Si and Sf ,where Si = S1

(0)
, and S1

(0)
 is the

second state of ψ0 = { Si = S0
(0)

,…,Ss
(0) = Sf } and Sf is the final state.

Solving the Euler´s equations, χ1=χ1(x, y, z) is obtained, which may be used to
calculate an expression for ψ1, through the mapping σ,as:
ψ1 = { Si = S1

(0)
, S1

(1)
, S2

(1)
, S3

(1)
, S4

(1)
,...., Sm

(1)
, , Ss

(1)= Sf }, and the same can be done
for any tj (see Figure 6).

From the previous equations, and based on variational calculus tools, an
expression can be determined to identify the final solution of the CBR-BDI agent.
This expression, which represents the agent plan, can be obtained in execution-time
and takes the following form:

 Ψ0 , t є (t0, t1)
 ………………..
Ψfinal = ψs-1 , t є (ts-2, ts-1)

 Ψs , t є (ts-1, ts)

5 Case-Based Reasoning applied to Planning

Planning can be defined as the construction of a course of actions to achieve a
specified set of goals in response to a given situation. The classical generative
planning process consists mainly of a search through the space of possible operators
to solve a given problem, but for most practical problems this search is intractable.
Given that classical planning may engage in a great deal of effort without achieving
very good results, several researchers have pursued a more synergistic approach
through generative and case-based planning [6].

A case in case-based planning consists of a problem (initial situation and set of
goals) and its plan. Given a new problem, the objective of the retrieval phase is to
select a case from the case-base whose problem description is most similar to the
description of the new problem. In case-based reasoning, two different approaches to
reuse can be distinguished: transformational and derivational adaptation.

Transformational adaptation methods usually consist of a set of domain dependent
concepts which modifies the solution obtained in the retrieved case directly. For
derivational adaptation, the retrieved solution is not modified directly, but is used to
guide the planner to find the solution. In case-based planning the “right” elements
need to be determined in order to index the cases. In this section, we compare three
systems that integrate generative and case-based planning: PRODIGY [8, 25], PARIS
[3, 4, 15], and Variational Calculus Based Planner (VCBP), which is the method
proposed in this chapter. These planners may be used in the development of
deliberative agent-based systems. For example [7] presents an agent-based system
that uses a modification of PRODIGY to generate their plans. [14] have also
presented a review of this field and present an agent-based system that uses VCBP to
achieve its goals. In PRODIGY and PARIS the workload imposed on the generative
planner depends on the amount of modification that is required to adapt the retrieved
cases. Looking at the structure, we can say that PARIS is a "domain-independent"
case-based planner while PRODIGY is "domain semi-dependent".

On the other hand, although VCBP is domain dependent, it introduces a new
interesting strategy to deal efficiently with the adaptation stage.

�
�
�

�

��
�

�

�

�
�
�

�

��
�

�

�

5

4

3

2

1

g
g
g
g
g

�
�

�

�
�

�

�

�
�

�

�
�

�

�

1

4

2

1

''

'
'

g
g
g
g

�
�

�
�

�

�
�

�
�

�

4

3

2

''
''

g
g
g

�
�

�
�

�

�
�

�
�

�

3

2

1

''
''
''

g
g
g �

�

�
�

�

�
�

�
�

�

3

2

1

''
''

g
g
g

5.1 PRODIGY

PRODIGY was the first system that achieved a complete synergy between generative
planning and case-based planning [25]. A planning case P consists of the successful
solution trace. The trace is simply the sequence of subgoals.

P → idx(P)=Tr(P)={ g1, g2,…, gn }=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

ng

g
g

....
2

1

The system identifies the set of weakest preconditions necessary to achieve each
goal, and, through a recursive regression, it is able to determine a guide for the
solution beginning from the initial state. The trace of a problem is simply an orderly
vector of subgoals and is represented as a vectorial column. After that, each case is
multiply indexed by these different sets of interacting goals, building a string of
relationships between them (Figure 7).

Fig. 7. Indexing string in PRODIGY

PRODIGY is a system for multi-case retrieval planning . When a new problem is
presented to the system, the retrieval procedure must match the new initial state and
the goal statement against the indices of the cases in the case library. Given a problem
P, we denote, idx(P)={(g1, g2, g3,…,gn)} where {gi}are subgoals, and therefore, the
retrieval solution takes the form,

Retrieve (P)={ P’=(g’1, g’2, …, g’n) /

nnn Pgg

Pgg

∈≈
−−−−−−

∈≈

'

' 111

}where P1, P2, ..,Pn ∈ CB.

Until now, PRODIGY has used an exploration mechanism in the state space to
obtain the trace of a problem in terms of subgoals. Now it explores the plan space to
obtain a solution pattern for the proposed problem. The system returns back to the
state space to build a solution adapted to the target problem. So the adaptation stage is
based on the “derivational analogy method” that builds lines of reasoning and adapts
to a new problem as opposed to transformational methods that directly adapt final
solutions. If we denote the problem factorised, the worst case time for finding the
complete solution is,

S(P)=ADAP[�
=

k

j
kC

1

] then, O[S(P)]=O[ADAP(C1)+…+ ADAP(Ck)]=O[f(n max)]

where “n max” is the highest factor of adaptation (corresponding to the subproblem
that requires most execution time in the adaptation process).

The organization of the case base plays an important role in the system. PRODIGY
maintains a smaller case base because it stores cases without its detailed description
(and connected by subgoals, thereby avoiding repeated information). We can
describe PRODIGY as a “semi-dependent work domain planner".

Assuming that the significant changes happen after the planner executes an action
(the environment doesn't change before perception and selection, but during the
process of execution of the selected action), it is possible to control the dynamism of
the environment and thus achieve a re-planning approach through the new events in
the domain. If we consider that the environment changes, and the original problem to
be solved, P, becomes another problem denoted by P', we can study two situations:
- P’=P+δ P, the new problem can be expressed as a small disturbance with respect

to the original. It is assumed that Tr(P)=Tr(P').
- P’=P+ ∆ P, the new problem generated by different dynamics holds that Tr(P) ≠

Tr(P’). In these cases, it is necessary to use backtracking mechanisms to achieve
new subgoals and retrieve previous conditions.

5.2 PARIS

PARIS is a domain independent case-based planning system that differs from the
traditional case-based reasoning approaches that retrieve, reuse and store cases in a
concrete representation. PARIS [3, 4] introduces abstraction techniques into the
process and retrieves, reuses and retains cases at different (higher) levels of
abstraction. When a new problem P must be resolved, the system associates it with a
set of abstract descriptions at different levels. The higher abstract levels are
characterized through a reduced level of detail in the representations consisting of
fewer features, relations, constraints, operators, etc.

It has been shown that traditional hierarchical problem-solving (e.g. ABSTRIPS,
[23]) are too restrictive. Therefore, PARIS enables different levels of abstraction to
have their own representation languages, allowing them to express different properties
without falling into the problems of more primitive abstract planners.

P → idx(P)= Abs(P)={Abs(j) (P) }j=0,1,..., n = {P, Abs(1) (P) Abs(2) (P),...,Abs(n) (P) }

The different levels are organized on the form of a hierarchy of cases at different
levels of abstraction, as can be seen in Figure 8. Abstract cases at higher levels of
abstraction are located above abstract cases at lower levels. The reason for using a
structure of abstract cases is that cases at higher-level of abstraction can be used as a
kind of prototype, which may be used as indices for a larger set of more detailed
related cases, and increases the flexibility of reuse.

Abs(n)

Abs(n-1)

Abs(n-2)

Abs(1)

P

 Fig. 8. Abstraction hierarchy in PARIS

When a new problem must be solved, an abstract case is retrieved, whose abstract
problem description matches the current problem’s level of abstraction. If several
matching process are possible, the retrieval procedure selects the case that is located
at the lowest level of abstraction (the motivation for this preference is that for more
concrete cases, less effort has to be spent during refinement to achieve a complete
solution). The branches are searched using a top-down strategy.

Retrieve(P)={ P’ ∈ CB / ()´)()(min)()(PAbPAb jj

j
≈ }

In the reuse phase, the retrieved abstract solution is refined. Note that PARIS
allows the reuse of problem decompositions at different levels of abstraction. The
worst case time for finding the complete solution is,

S(P)=ADAP[�
=

k

j
kC

1

] then O[S(P)]=O[ADAP(C1)+…+ADAP(Ck)]=O[f[nmax(x)]]

where n max(x) is not a parameter but a function that depends on the user's criteria.
The user can decide how much effort should be required in the adaptation stage

and he/she can stop the adaptation process when the algorithm exceeds a fixed time of
execution. The kind of storage in PARIS, an organized hierarchy of abstraction cases,
allows the integration of a pruning mechanism to conserve the cases at higher levels
of abstraction and remove lower levels. It reduces the associated computational costs
but, on the other hand, maintains the information from all cases.

idx(C1),…, idx(Cf)
∩

idx(Cg),…, idx(Cj)

∩
…………..

∩

idx(Ck),…, idx(Cp)
∩

idx(Cq),…, idx(Cs)

Given a problem P, with idx(P)={Abs(j) (P)}j, PARIS matches the case base
searching the abstract expression of a stored problem P' that serves as a solution to P.
Once this high-level abstract expression is identified, the system begins a process of
refinement of the solution through a top-down exploration.

If the environment changes, and the problem P becomes a new problem P', the
system will begin an inverse process of exploration down-top, until a more abstract
case is found in the tree.

5.3 Comparison between PARIS, PRODIGY and VCBP

The methodology introduced here, Variational Calculus-based Planner (VCBP),
associates with each problem P, a representation matrix in terms of two parameters,
“Objectives held” and “Resources lost”, as shown in this chapter.

P →idx(P)=Mx(P)=
��

�
�
�

��

�
�
�

�
�

	

�
�

�

�
�

	

�
�

�

=

=

=

=

qsfs

prfr

qsis

prir

SR

SO

SR

SO

,...,1

,...,1

,...,1

,...,1

)(

)(
,

)(

)(

This kind of representation allows the organization of indices of the case base
using a subsumption hierarchy. As mentioned in previous sections, if we denote all
the cases stored as (C1,.., Cq)∈ CB, the indexing structure can be expressed as

idx(C1) ⊆ idx(C2) ⊆ … ⊆ idx(Cq)

which is represented graphically in Figure 9.

Fig. 9. Subsumption hierarchy in VCBP

Given a problem P, we offer “possible solutions CBR of P" in the following set,

Γ ={Ck∈ CB/ {idx(Ck) }k=1,...,m ⊇ idx(P)}⊆ CB

If it is VC called “variational calculus” operator, the retrieved case it is denoted as,

Retrieve(P)={ P’ ∈ CB / P’ ()Γ= VC }

Variational calculus determines an approach for selecting the best stored case to be
retrieved. This strategy is part of a mechanism of transformational adaptation. In this
system, it can be said that the “reuse stage” is subordinate to the “retrieval stage” [14].
For this reason, the computational costs at this stage, are lower than in PRODIGY or
PARIS. If we express the solution in terms of the retrieved cases, and we call it

S(P)=ADAP[�
=

k

j
kC

1

] , then

O[S(P)]=O[ADAP(C1)+ADAP(C2)+...+ADAP(Ck)]=O[C1+C2+...+Ck]= k

O[S(P)] is proportional to the number of cases that construct the solution.
Consequently, the variational strategy reduces the effort of adaptation, increasing the
number of cases at the retrieval stage. The transformational mechanisms force the
application to solve problems that have domain dependence. In planners like PARIS,
the dependence of the domain is smaller because it is based on strategies of
abstraction, and therefore, it is more flexible in its application. But in other domains,
using transformational adaptation reduces the computational costs and the time
required for execution of the program. Formally, VCBP uses a reasoning process in
execution time expressed in similar terms to when it solves static problems, since the
general description of the problem remains constant.

On the one hand, the three systems presented in this chapter have in common the
synergistic integration of generative planning with a case-based reasoner. On the
other hand, they differ in many respects because of different motivations and
mechanisms. Such similarities and differences are now outlined with respect to the
indexing strategy, the retrieval, reuse and retention stages and the systems’ dynamic
behaviour.

Index
• In PRODIGY a goal regression process is performed to determine the features

and subgoals relevant to a particular case. The result is called the trace of the
problem.

• PARIS stores several abstractions of the same solution. The result is an
abstraction vector for each problem.

• VCBP associates with each problem P, a representation matrix in terms of two
parameters, “Objectives held” and “Resources lost”.

Indexing
• In PRODIGY, indexing is based on the partially ordered solution plan.

Connected components are determined and identified in order to index
independent subparts of the cases.

• In PARIS, indexing is based on an abstraction process that represents several
concrete solutions, and by refining it, a detailed solution to a target problem is
achieved.

• VCBP uses as indexing strategy a Subsumption hierarchy to organize cases.

Retrieval
• PRODIGY. When matching the candidate cases and the target problem, only

relevant features are taken into account. Multi-case Retrieval is bound to finding
a case with a “reasonable” partial match.

• In PARIS, a case corresponding to an abstract plan is retrieved. This plan solves
the abstracted problem description finding an appropriate set of cases that build a
solution at the lowest possible level of abstraction.

• In VCBP, variational calculus determines the criteria to select which is the best
stored case to be retrieved. The strategy supports, as shown, multi-case retrieval.

Reuse
• PRODIGY can construct a new solution from a set of guiding abstract cases as

opposed to a single and concrete past case. It is based on the derivational analogy
method.

• A retrieved case in PARIS is an abstraction of a plan. Adaptation refines the
retrieved case, considered as a guide, to produce a solution at the concrete
planning level.

• In VCBP, the adaptation function can be seen as a series of operators, where each
operator is a part of a retrieved case. This is a transformational method that
adapts directly final solutions.

Retention
• PRODIGY, through its structure, is a good planner in a variety of domains. It can

be applied to problems with low domain dependence
• PARIS is a domain-independent case-based planning system.
• The transformational mechanism of VCBP forces its use in problems that have

domain dependence.

Dynamics
• When the environment changes and a new problem is presented to the system,

PRODIGY uses backtracking methods to achieve a previous situation.
• In PARIS, the abstraction hierarchy is traversed down-top, from the solution that

fails, following those branches in which abstract cases are similar to the current
problem.

• VCBP allows planning and replanning in execution-time because its formalism
follows the same rules in static and dynamic environments.

The following table summarizes the previously mentioned characteristics.

Table 5. Summary of characteristics of planners

System Index Indexing Retrieval Reuse Retention Dynamics

PRODIGY Tr(P) Subgoals
joint Multi-case Derivational

Intermediate
domain

dependence
Top-down

PARIS Ab(P) Abstraction
tree Multi-case Derivational Low domain

dependence Backtracking

VCBP Mx(P) Subsumtion
herarchy Multi-case Transformational Domain

dependence
Execution

time

6 TOURISTGUIDE-USAL:
A “CBR-BDI” system to solve problems in the e-tourism domain

The framework in which this mathematical formalization and experiments are being
developed aims to design and implement an agent-based tool, as well as integrating
existing state of the art in order to create an open, flexible, global anticipatory system
with mobile access for the promotion and management of inland and cultural tourism,
which will be user-friendly, cost-effective and secure. The system will be
standardized and interlingua. It will be aimed as both a B2B and B2C tool and thereby
help individuals, private enterprise and public bodies connected directly and indirectly
to tourism to achieve higher quality of service.

The integrated, multi-platform computer tool developed has been used to design an
agent based system for the promotion of inland and cultural sites for tourism based on
their cultural worth, the recreational activities on offer and new perspectives on
sources of patrimonial interest. This has been combined with horizontally and
vertically compiled information on hotel accommodation, restaurants, the commercial
sector and transport, in order to meet the needs of the potential visitor on an
individually customized basis and respond to requests for information, reservations
and purchases in the precise moment that they are expressed.

The project aims to develop innovative, practical and multidisciplinary solutions
which aim to use the varied knowledge of individuals at each location, and to
organize the different services – often offered chaotically by different sources –
within a single, dynamic, interconnected knowledge system. In order to achieve this,
it will be necessary to integrate within a TIC platform, information that will facilitate
the management of the knowledge lifecycle of various organizations.

One of the initial steps in this research is to develop an agent architecture for
modelling autonomous agents. In this context our first experiment has been to design
an individual agent, using the previously presented formalization, whose aim is to
assist tourists in identifying an optimum schedule for a day trip in the city of
Salamanca.

Figure 10 describes the interaction process between the user and the tourist guide-
usal agent. The tourist uses a mobile device (i.e. mobile-phone, PDA, etc.) to contact
with the agent. After, the user introduces his/her login and password, and indicates to
the agent his/her preferences (monuments to visit, times for dinner and type, amount
of money to spend, visit duration, etc.).

Then the agent assigned to that particular tourist generate a customized plan and
show it to the user, using the previously described case-based reasoning model. Such
CBR-BDI system stores the beliefs, desires and intentions of the agent. Moreover the
agent has information about previous tourist requests, plans and about the degree of
satisfaction of the tourist after using the agent based system. The tourists may also
change their schedule on the move for example if they decide to move the dinner time
forward repeat a visit to a particular place, etc.

The CBR-BDI agent then will be able to adapt the plan to the new tourist
requirements in execution-time. Also, since the CBR is learning continuously, the
agent is learning too and could provide different schedules at different points in time
for the same tourist query.

Fig. 10. Schema of relations in TOURISTGUIDE-USAL

The TOURISTGUIDE-USAL has proved successful and is now in the process of
application. This methodology is being used to construct agent-based systems in areas
such as robotics and traffic control processes.

7 Conclusions

The integration of CBR systems and BDI agents solves one of the problems of the
BDI (deliberative) architectures, which is the lacking of learning capacity. The
reasoning cycle of the CBR systems helps the agents to solve problems, facilitate its
adaptation to changes in the environment and to identify new possible solutions. New
cases are continuously introduced and older ones are eliminated. The CBR component
of the architecture provides a straight and efficient way for the manipulation of the

User CBR-BDI
Agent

User
preferences

login/password

Believes
Desires
Intentions (Plans)

agents knowledge and past experiences. The proposal presented in this chapter
reduces the gap that exists between the formalization and the implementation of BDI
agents. What we propose in this article is to define the beliefs, desires and intentions
clearly (they don’t need to be symbolic or completely logic), and to use them in the
life cycle of the CBR system, to obtain a direct implementation of a BDI agent.

A mathematical formalism has been introduced to facilitate the representation of
BDI deliberative agents and of CBR systems. This analytical formalism also allows
the integration of both models and provides a robust framework for the definition and
the automatization of the reasoning cycle of the agents, here presented.

Agents need to respond on real time to the user request and to adapt their solutions
in real time, since the inhabit dynamic environments. Variational calculus has been
introduced in this chapter to facilitate the agents to define their plans and to
replanning in execution-time in order to provide the best possible service. Variational
calculus can be used to obtain the most adequate plan to achieve a goal in
environment with uncertainty.

This chapter has shown how the proposed knowledge engineering architecture may
be used to design an agent for an e-tourism problem. The work presented in this
chapter is just the first step toward the development of an ambitious framework for
developing communities of agents capable of solving problems in an autonomous and
intelligent manner. Although the architecture and formalization described have been
applied to the e-tourism domain, we believe it could be also used in any other domain
in which agents with learning and adaptation capabilities are required.

Acknowledgements

This work has been partially supported by the IST-2001-34240 project, by the
CICYT projects TEL99-0335-C04-03 and SEC2000-0249 and the PGIDT00
project MAR30104PR.

References

1. Aamodt A. and Plaza E. (1994) Case-Based Reasoning: foundational Issues,
Methodological Variations, and System Approaches, AICOM. Vol. 7., March, pp
39-59.

2. Bratman M.E. (1987) Intentions, Plans and Practical Reason. Harvard University
Press, Cambridge, M.A.

3. Bergmann, R. and W. Wilke (1995). Learning abstract planning cases. In N.
Lavrac and S. Wrobel (Eds.), Machine Learning: ECML-95, 8th European
Conference on Machine Learning, Heraclion, Greece, April 1995. Number 912 in
Lecture Notes in Artificial Intelligence, pp. 55-76. Berlin, Springer

4. Bergmann, R. and W. Wilke (1996). On the role of abstraction in case-based
reasoning. Lecture Notes in Artificial Intelligence, 1186, pp. 28-43. Springer
Verlag.

5. Bergmann R. and Wilke W. (1998). Towards a New Formal Model of
Transformational Adaptation in Case-Based Reasoning. European Conference in
Artificial Intelligence (ECAI’98), John Wiley and Sons, pp.224-236.

6. Bergmann, R., Muñoz-Ávila, H., Veloso, M. and Melis, E. (1998). CBR Applied
to Planning. In Lenz, M. Bartsch-Sporl, B., Burkhard, H. and Wess, S. (Eds.)
Case-Based Reasoning Technology: From Foundations to Applications. Lecture
Notes in Computer Science 1400, pp. 169-200. Springer 1998, ISBN 3-540-
64572-1.

7. Camacho D., Borrajo D. And Molina J. M. (2001) Intelligence Travell Planning: a
multiagent planing system to solve web problems in the e-turism domain.
International Journal on Autonomous agens and Multiagent systems. 4(4) pp 385-
390. December.

8. Carbonell J.G., Knoblock C. A., Minton S. (1991). Prodigy: An integrated
architecture for planning and learning. In K. VanLenh (Ed.), Architectures for
Intelligence, pp.241-278. Lawrence Erlbaum Associates, Publishers.

9. Cohen P.R. and Levesque H.J. (1990) Intention is choice with commitment.
Artificial Intelligence, 42(3) pp: 213-261, 1990.

10. Corchado J. M. and Lees B. (2001) A Hybrid Case-based Model for Forecasting.
Applied Artificial Intelligence. Vol 15, no. 2, pp105-127.

11. Corchado J. M. and Laza R. (2002). Construction of BDI Agents from CBR
systems. First German Workshop on Experience Management, Berlin, March,
2002. ISBN 3-88579-340-7, ISN 1617-5468, Vol. 1, pp 47-60.

12. De Groot M. H. (1970) Optical Statiscal Decisions. McGraw-Hill. New York
13. Fyfe C. and Corchado J. M. (2001) Automating the construction of CBR Systems

using Kernel Methods. International Journal of Intelligent Systems. Vol 16, No. 4,
April 2001. ISSN 0884-8173.

14. González Bedia M. and Corchado J. M. (2002) A planning strategy based on
variational calculus for deliberative agents. Computing and Information Systems
Journal. Vol 10, No 1, 2002. ISBN: 1352-9404, pp: 2-14.

15. Holte, R. C., T. Mkadmi, R. M. Zimmer, and A. J. MacDonald (1995). Speeding
up problem solving by abstraction: A graph-oriented approach. Technical report,
University of Ottawa, Ontario, Canada.

16. Jennings N.R. (1992) On Being Responsible. In Y. Demazeau and E. Werner,
editors, Decentralized A.I. 3. North Holland, Amsterdam, The Netherlands.

17. Kinny D. and Georgeff M. (1991) Commitment and effectiveness of situated
agents. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence (IJCAI’91), pages 82-88, Sydney, Australia.

18. Knobolock C. A., Minton S., Ambite J. L., Muslea M., Oh J. and Frank M. (2001)
Mixed- initiative, multisource information asistants. 10th International world wide
web conference (WWW10). ACM Press. May 1-5,pp.145-163.

19. Martín F. J., Plaza E., Arcos J. L. (1999). Knowledge and experience reuse
through communications among competent (peer) agents. International Journal of
Software Engineering and Knowledge Engineering, Vol. 9, No. 3, 319-341.

20. Morse P. M and Feshbach H. (1953) Methods of Theoretical Physics. McGraw-
Hill. New York.

21. Olivia C., Chang C. F., Enguix C.F. and Ghose A.K. (1999) Case-Based BDI
Agents: An Effective Approach for Intelligent Search on the World Wide Web",

AAAI Spring Symposium on Intelligent Agents, 22-24 March 1999, Stanford
University, USA, pp. 76-84.

22. Rao A. S. and Georgeff M. P. (1995) BDI Agents: From Theory to Practice. First
International Conference on Multi-Agent Systems (ICMAS-95). San Francisco,
USA, pp 312-319.

23. Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence 5, 115-135.

24. Shoham Y. (1993) Agent-Oriented programming. Artificial Intelligence, 60(1):
pages 51-92.

25. Veloso, M. M. (1994). Planning and Learning by Analogical Reasoning. Number
886 in Lectures Notes in Computer Science. Berlin, Springer.

26. Watson I. and Marir F. (1994) Case-Based Reasoning: A Review. Cambridge
University Press, 1994. The knowledge Engineering Review. Vol. 9(3), pp. 249-
293.

27. Wendler J. and Lenz M. (1998) CBR for Dynamic Situation Assessment in an
Agent-Oriented Setting. Proc. AAAI-98 Workshop on CBR Integrations. Madison
(USA) 1998, pp.172-186.

28. Wooldridge M. and Jennings N. R. (1994) Agent Theories, Architectures, and
Languages: A Survey. Procs. ECAI-94 Workshop on Agent Theories,
Architectures, and Languages, pp.317-361.

