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a b s t r a c t 

Optimization problems often require the use of optimization methods that permit the minimization or 

maximization of certain objective functions. Occasionally, the problems that must be optimized are not 

linear or polynomial; they cannot be precisely resolved, and they must be approximated. In these cases, 

it is necessary to apply heuristics, which are able to resolve these kinds of problems. Some algorithms 

linearize the restrictions and objective functions at a specific point of the space by applying derivatives 

and partial derivatives for some cases, while in other cases evolutionary algorithms are used to approxi- 

mate the solution. This work proposes the use of artificial neural networks to approximate the objective 

function in optimization problems to make it possible to apply other techniques to resolve the problem. 

The objective function is approximated by a non-linear regression that can be used to resolve an opti- 

mization problem. The derivate of the new objective function should be polynomial so that the solution 

of the optimization problem can be calculated. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Optimization problems are an important part of soft computing,

and have been applied to different fields such as smart grids [1] ,

logistics [2,3] , resources [4] or sensor networks [5] . Such problems

are characterized by the presence of one or more objective max-

imizing or minimizing functions [5] and various restrictions that

must be met so that the solution is valid. The problems are easy

to resolve when we are working with linear restrictions and objec-

tive functions because there are methods to obtain the optimal so-

lution. However, in the case of non-linear restrictions or objective

functions, it may be necessary to use heuristics [2,5] to obtain a

pseudo-optimal solution. The management of heuristic solutions is

continually evolving, which is precisely why we are looking for al-

ternatives to problems in which it is not feasible to find an optimal

solution. When working with linear restrictions and objective func-

tions, optimization problems can be resolved with algorithms such

as the Simplex [6] , which limits the study of this type of problem.

Certain non-linear problems can be optimally resolved by using al-

gorithms such as Lagrange multipliers or Kuhn–Tucker conditions

[7] . In many cases, it is not possible to resolve a problem with La-

grange multipliers because the generated system of equations can-

not be resolved without resorting to numerical methods, which

would prevent a direct approach to resolving the problem. In other

cases, the Kuhn–Tucker conditions are not met. There is a broad
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ange of opportunities to study optimization problems that can-

ot be solved with an exact algorithm. These problems are usually

olved by applying a heuristics and metaheuristics solution such as

enetic algorithms [8] , particle swarm optimization [9] , Simulated

nnealing [10] , ant colony optimization [11] etc. 

This work proposes the use of neural networks such as heuris-

ics to resolve optimization problems in those cases where the use

f linear programming or Lagrange multipliers is not feasible. To

esolve these problems a multilayer perceptron is applied to ap-

roximate the objective functions; the same process could be fol-

owed in the restrictions. The proposal establishes the activation

unction to be used and the criteria to conduct the training us-

ng a dataset according to the defined domain of the variables.

his process makes it possible to transform objective functions into

ther functions, which can then be applied to resolve optimization

roblems that can be resolved without metaheuristics. The objec-

ive function is approximated with a non-linear regression with

he objective to obtain a new function that facilitates the solution

f the optimization problem. The activation function of the neural

etwork must be selected so that the derivate of the transformed

bjective functions should be polynomial. Once the new objective

unctions has been calculated the problem can be resolved with

ther techniques. The same process can be applied to non-equality

estrictions, but it is necessary to introduce gaps to satisfy the re-

trictions. 

This paper is organized as follows: Section 2 revises re-

ated works, Section 3 describes the proposal, and finally Section

 shows the results and conclusions obtained. 
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Fig. 1. Workflow optimization problem. 
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. Heuristics applied to optimization 

On certain occasions, optimization problems cannot be solved

y applying methods such as Simplex or Lagrange. Methods such

s Simplex are applicable only when problems are linear, so the

lgorithm cannot be properly applied when the objective function

r constraints are nonlinear. Lagrange makes it possible to resolve

ptimization problems even when problems are not linear, but it

s not always possible to resolve the equations after applying La-

range. When exact algorithms do not allow obtaining an optimal

olution, it is necessary to apply heuristics and metaheuristics al-

orithms. Some heuristics, such as ant colony optimization, are ori-

nted to resolve optimization problems in graphs [12] , although

hey can be applied in other optimization fields such as control

rocesses [13] . The authors in this study [13] applied fuzzy logic in

 nonlinear process to improve the efficiency in the learning pro-

ess with regard to execution time. Other alternatives such as sim-

lated annealing or PSO (Particle Swarm Optimization) are com-

only applied in optimization functions. In general, several evolu-

ional algorithms can be applied to resolve optimization problems,

s seen in various studies [9,13] . 

In mathematics, there are heuristics methods that work with

pproximation functions. Approximation functions are usually de-

ned around a point, which would make it possible to use poly-

omials to approximate functions by applying the Taylor theorem.

ased on this idea, it would be possible to solve non-linear op-

imization problems by applying Taylor nonlinear functions. This

dea has been applied in algorithms such as Frank-Wolfe [14] ,

hich allows linearizing objective functions by applying deriva-

ives in a point to calculate the straight line, plane or hyperplane

rosses through that point. The solutions are calculated iteratively

ith a new hyperplane for each iteration. MAP (Method of Approx-

mation Programming) is a generalization of the Frank-Wolfe algo-

ithm, which permits linearizing the restrictions. 

This work proposes carrying out this approximation in a more

eneric manner, making it possible to solve the problem without

eeding to calculate a new approximation for each tentative solu-

ion. We propose to do so by applying neural networks. 

. Proposal 

Komogorov’s theorem says that a multilayer perceptron with 3

ayers makes it possible to precisely define any continuous func-

ion. However, for the approximation to be exact, it is necessary to

efine an activation function and parameters for which there are

o calculation procedures. It is not possible to apply just any ac-

ivation function, because we must take into account the objective

f the functions to simplify the problem. 

The proposal to solve an optimization problem is explained in

ig. 1 . The system generates a dataset in the domain of the vari-

bles to train a neural network. The objective function of the opti-

ization problem is redefined with the multilayer perceptron that

ransforms the function, making it possible to generate a polyno-

ial equation to resolve the optimization problem. Finally, when

he new objective function is calculated another solution can be

pplied to resolve the problem. 

To define a neural network, it is necessary to establish param-

ters, such as the connections, number of layers, activation func-

ions, propagation rules etc. In the case of the multilayer percep-

ron, we need to consider its two different stages: the learning

tage, and the prediction process. In both stages, the number of

ayers and activation functions have to be the same. In the predic-

ion stage, other parameters such as the learning rate or the mo-

entum are not relevant. In the case of the multilayer perceptron,

he propagation rule is the weighted sum, and it is defined accord-
ng to ( 1 ). 

n 
 

i =1 

w i j x i (t) (1) 

Where w ij is the weight that connects neuron i in the input

ayer with neuron j in the hidden layer, x i is the output from neu-

on i in the input layer, n is the number of neurons in the input

ayers, and t is the pattern. 

In case of having bias in the neuron, the result would be what

s shown in ( 2 ). 

n 
 

i =1 

w i j x i (t) + θ j (2) 

After calculating the propagation rules, we should apply the ac-

ivation function. If the activation function is linear, we would have

n output of neuron j that would be a linear combination of the

eurons in the input layer and, consequently, y j would be a linear

unction. Therefore, if the activation function is the identity, the

et output would correspond to the output of the neuron. 

So, if neuron k in the output layer also has the activation func-

ion f , the output would be defined as ( 3 ). 

 j (t) = f 

( 

n ∑ 

i =1 

w i j x i (t) + θ j 

) 

(3) 

Bearing in mind that the multilayer perceptron has three layers,

t is necessary to apply the propagation rule on two occasions in

rder to transmit the value in the input layer to the neuros in the

utput layer ( 4 ). 

 k (t) = 

m ∑ 

j=1 

w jk y i (t) + θk (4) 

Where k represents neuron k in the output layer, and m is the

umber of neurons in the hidden layer. 
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Fig. 2. (a) Arctan activation function, (b) sigmoidal. 
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Fig. 3. Derivate of (a) arctan activation function, (b) sigmoidal. 
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Replacing ( 4 ) with ( 3 ) we would have the output in neuron k

defined according to the equation represented in ( 5 ). 

y k (t) = 

m ∑ 

j=1 

w jk f 

( 

n ∑ 

i =1 

w i j x i (t) + θ j 

) 

+ θk (5)

In the function defined in ( 5 ), if f is the identity, the output in

neuron k from the output layer is calculated as a linear combina-

tion of the inputs, so the function is linear. 

As a result, if we train the multilayer perceptron with an iden-

tity activation function, it would be possible to make an approxi-

mation of the trained function. Given an optimization problem in

which the objective function is not linear, it would then be pos-

sible to redefine the function according to the expression ( 5 ) so

that it would be linear. Although we have defined approximation

functions, we were not able to prevent them from becoming hyper-

plane, so the activation function f cannot be linear. In this case, we

have selected the arctan activation function because its derivative

is simple and makes it possible to simply functions. For example, a

trigonometric or exponential objective function to polynomial ob-

jective function can be solved with Lagrange. 

The arctan activation function is shown in Fig. 2 a. We can see

that it is similar to the sigmoidal function in Fig. 2 b; as such, the

training of the neuronal network should be similar with both acti-

vation functions. 

The sigmoidal function is commonly used in neural networks;

however, we used arctan because the equation of the derivative is

simpler than the expression of the sigmoidal. Although the func-

tions are similar, as we can see in Fig. 3 a and b, the equation of

the derivative of arctan is shown in Eq. (6) , and the equation of
he derivative of sigmoidal is shown in ( 7 ). 

rc T an ( f ) = 

f ′ 
1 + f 2 

(6)

igmoidal( f ) = − f ′ e f (
1 + e f 

)2 
(7)

Then, if we have to solve an optimization problem defined (in)

 8 ) 

f ( x 1 , . . . , x n ) 
st 

r 1 ( x 1 , . . . , x n ) ≤ 0 

. . . 

r m 

( x 1 , . . . , x n ) ≤ 0 

(8)

Where r i is the constraint and f the objective function. 

We could approximate the objective function with the neural

etwork defined in ( 5 ) 

f ( x 1 , . . . , x n ) = 

m ∑ 

j=1 

w jk f 

(
n ∑ 

i =1 

w i j x i (t) + θ j 

)
+ θk 

st 
r 1 ( x 1 , . . . , x n ) ≤ 0 

· · ·
r m 

( x 1 , . . . , x n ) ≤ 0 

(9)
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Therefore, the following optimization problem could be solved

ith Kuhn–Tucker, applying the equation 

∂ f ( x 1 , ... , x n ) 
∂ x j 

±
m ∑ 

i =1 

λi 
∂ r i ( x 1 , ... , x n ) 

∂ x j 
≤ 0 j = 1 ..m 

λ1 ∗ r 1 ( x 1 , . . . , x n ) = 0 

λ2 ∗ r 2 ( x 1 , . . . , x n ) = 0 

. . . 

λm 

∗ r m 

( x 1 , . . . , x n ) = 0 

(10) 

With Lagrange the idea would be similar, given the optimiza-

ion problem defined by ( 11 ) 

f ( x 1 , . . . , x n ) 
st 

r 1 ( x 1 , . . . , x n ) = 0 

. . . 

r m 

( x 1 , . . . , x n ) = 0 

(11) 

The optimization problem would be solved according to 

 ( x 1 , . . . , x n , λ1 , . . . λm 

) = 

m ∑ 

j=1 

w jk f 

( 

n ∑ 

i =1 

w i j x i (t) + θ j 

) 

+ θk 

+ 

m ∑ 

i =1 

λi · r i 

∂L 

∂ x i 
= 0 ∀ i ∈ { 1 , . . . , n } 

∂L 

∂ λ j 

= 0 ∀ j ∈ { 1 , . . . , m } 
(12) 

According to expression ( 10 ) and ( 12 ), we can see that it is very

mportant to use an activation function to simplify its derivative

nd calculate the solution more easily. 

Likewise, we could continue with the constraints; however,

hen working with equal constraints, it would be more compli-

ated to apply this heuristic. For restrictions with inequality, it is

ossible to introduce a threshold based on the training carried out

n the neural network. For the threshold to be lower, it would be

est to have previously trained the neural network with values in

he variables around their definition. In other words, in a problem

ith restrictions similar to ( 13 ) we should generate a dataset for

he training phase that matches the restrictions for the variable x i . 
he lower the difference among consecutives values, the lower the

rror to define the threshold. 

 i ≤ x i ≤ b i 
 i ≥ a i 
 i ≤ b i 

(13) 

Therefore the restrictions defined according to ( 14 ) through the

nclusion of threshold and based on the expression ( 5 ), will be de-

ned as ( 15 ) 

 s ( x 1 , . . . , x n ) ≤ 0 (14)

m 

 

j=1 

w jk f 

( 

n ∑ 

i =1 

w i j x i (t) + θ j 

) 

+ θk + μs = 0 (15) 
Finally, the optimization problem defined as ( 8 ) would be de-

ned according the expression ( 16 ) 

f ( x 1 , . . . , x n ) = 

m 

1 ∑ 

j=1 

w 

1 
jk 

f 

(
n 1 ∑ 

i =1 

w 

1 
i j 

x 1 
i 
(t) + θ1 

j 

)
+ θ1 

k 

st 
m 

1 ∑ 

j=1 

w 

1 
jk 

f 

(
n 1 ∑ 

i =1 

w 

1 
i j 

x 1 
i 
(t) + θ1 

j 

)
+ θ1 

k 
+ μ1 

s = 0 

... 
m 

n ∑ 

j=1 

w 

n 
jk 

f 

(
n n ∑ 

i =1 

w 

n 
i j 

x n 
i 
(t) + θn 

j 

)
+ θn 

k 
+ μn 

s = 0 

(16) 

As an alternative to the use of neural networks, it would also

e possible to use other techniques to approximate functions, such

s applying Support Vector Regression (SVR). SVR can approximate

unctions as a linear combination in a space with higher dimen-

ions than the original. 

. Results and conclusions 

In order to analyze the performance of the proposal, we ana-

yzed different optimization problems and compared the predicted

nd optimal values in the system. The tests were made with a neu-

al networks tool developed by our research group and the Mathe-

atica program. Mathematica was used to solve the equations af-

er defining the approximation with a multilayer perceptron. The

ataset used to train the neural network is generated according

o the domain of the variables. It contains the input variables in

he objective function and the output in the objective function ob-

ained for these values. The domain of the variables is defined in

he constraints of the optimization problem. 

The first test was to analyze the performance of the system

ith a simple optimization problem. It was a linear function that

as approximated with a multilayer perceptron, which activates

unctions in the hidden and output linear layers. 

Max 15 x + 10 y 
st 

1 

30 0 0 

x + 

1 

60 0 0 

y ≤ 2 

25 

1 

30 0 0 

x + 

1 

20 0 0 

y ≤ 1 

100 

x ≥ 0 , y ≥ 0 

(17) 

The result is x = 30, y = 0 and the value of the objective func-

ion is 450 when we replace the objective function 15 x + 10 y

y the approximated function with the neural network shown in

ig. 4 a. The result of the objective function is 4 4 4.406 and the

alue of x = 30 and y = 0. This result was obtained in a quick train-

ng of the neural network; therefore, it could be easily improved. If

e applied PSO to resolve the optimization problem the results for

he variable x = 29.98 and y = 0. The objective function was 449.84,

 better result than that provided by the proposal; however, as we

aid, it was only to test the system with a fast training of the neu-

al network. 
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Fig. 4. Neural network (a) linear approximation (b) non-linear approximation. 
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The second test was to analyze the prediction with two vari-

ables and with non-linear objective functions. 

Max 
3 x 1 
50 

+ 

3 x 2 
100 

− x 1 
25 

x 2 
100 

− 2 x 2 1 

100 

+ 

3 x 2 2 

100 

st 
x 1 + x 2 ≤ 1 

2 x 1 + 3 x 2 ≤ 4 

3 x 1 + 2 x 2 ≥ 2 

x 1 ≥ 0 

x 1 ≤ 0 . 8 

x 2 ≥ 0 

x 2 ≤ 0 . 3 

(18)

The optimal value of the objective function with Nelder Mead

was 0.039936, and the values of the variables are x 1 = 0.8,

x 2 = 0.20 0 0 09, the constraint 1 is not valid with this solutions.

The optimal value of the objective function with Differential Evo-

lution was 0.0015949, and the values of the variables are x 1 = 0.64,

x 2 = 0.20 0 0 08; the constraint 1 is not valid with this solutions.

The solution obtained with the neural network shown in Fig. 4 b

is 0.039936, x 1 = 0.8, x 2 = 0.2. The neural network had two input

layers, 11 neuros in the hidden layer an arctan activation function,

and one output with the value of the objective function. The learn-

ing rate was defined as 0.01, and momentum as 0.001. The neu-

ral network was trained manually and the training was stopped

when the error remained constant. The result obtained with PSO

was 0.035, x 1 = 0.46 and x 2 = 0.3. In this case, the better result was

obtained by the proposal. 

In this example, we selected a trigonometric objective func-

tion, similar to that in ( 19 ). The result with Nelder Mead was
.998673, x 1 = 0.249963, x 2 = −0.250028, the solution did not

atch with the first constraints. The result with Differential Evolu-

ion was 0.998673, x 1 = 0.249963, x 2 = −0.250028, the solution did

ot match with the first constraints. We have obtained the RNA the

esult was 0.998569, x 1 = 0.255127, x 2 = −0.244873. We can see the

riginal function in Fig. 5 a and the approximation in Fig. 5 b. It is

vident that the approximation is quite good. The neural network

ad two input layers, 17 neurons in the hidden layer, an arctan ac-

ivation function, and one output with the value of the objective

unction. The learning rate was defined as 0.01, and momentum

s 0.001. The neural network was trained manually and the train-

ng was stopped when the error remained constant. The result ob-

ained with PSO was 1.0 0 0 04 and the variables were x 1 = 0.100,

 2 = −0.100. In this case the better result was obtained by the PSO

lgorithm. 

Max cos ( x 1 x 2 ) − x 1 x 2 / 100 − sin ( x 1 + x 2 )( x 1 + x 2 ) 
st 

x 1 − x 2 ≥ 0 . 5 

x 1 · x 2 ≤ 15 

x 1 ≥ 0 

x 1 ≤ 1 . 5 

x 2 ≥ −1 

x 2 ≤ 1 

(19)

As we can see in the results, the system is able to approximate

bjective functions with a multilayer perceptron and use these ap-

roximations to solve optimization problems. In some cases, meta-

euristics are not able to provide a solution that matches the
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Fig. 5. (a) Original function (b) approximated function. 
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estriction, although the solution calculated with the new objective

unction did match. The main disadvantage of the proposal is that

t is necessary to train the neural network and it is necessary to

se Lagrange or Kuhn–Tucker with the neural network; this makes

t impossible to use any activation function, such as a sigmoidal.

he proposal uses an arctan activation function because its deriva-

ive is polynomial, which makes it possible to solve the generated

quation system with Lagrange or Kuhn–Tucker. The main problem

f the proposal is that when we approximate equality constraints

e will have to deal with small errors and the solution will not be

alid; in other kinds of restrictions we can introduce a threshold

n order to obtain valid solutions. 
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