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A comprehensive analysis of clustering techniques is presented in this paper 
through their application to data on meteorological conditions. Six partitional and 
hierarchical clustering techniques (k-means, k-medoids, SOM k-means,
Agglomerative Hierarchical Clustering, and Clustering based on Gaussian Mixture 
Models) with different distance criteria, together with some clustering evaluation 
measures (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette criterion
clustering evaluation object), present various analyses of the main climatic zones in 
Spain. Real-life data sets, recorded by AEMET (Spanish Meteorological Agency) at 
four of its weather stations, are analyzed in order to characterize the actual weather 
conditions at each location. The clustering techniques process the data on some of 
the main daily meteorological variables collected at these stations over six years 
between 2004 and 2010.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Meteorology and climatology are different fields of study, although they may often be confused. Meteorol-
ogy is the scientific study of atmospheric phenomena, physical processes in the atmosphere and atmospheric 
effects on the weather. Meteorologists then produce weather forecasts that predict short changes in the 
weather. In contrast, climatology is the study of atmospheric changes that define average climates and 
their long-term changes, due to both natural and anthropogenic variations in the climate. Climatological 
studies therefore share certain meteorological parameters, although climatology predicts long-term weather 
patterns through climatic models rather than making short-term forecasts. The present study focuses on 
the clustering analysis of meteorological data from four locations in Spain over a five-year period.
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Clustering is a useful technique [29] in the study of meteorological phenomena and correct selection 
of the right clustering algorithm, a requisite for successful experiments. Clustering can be defined as the 
unsupervised classification of patterns into groups [14]. Hence, clustering (or grouping) techniques will 
divide a given dataset into groups of similar objects, according to various “similarity” measures. These sets 
of techniques have previously been applied to meteorological data. In [25], 24-hour mass air trajectories were 
analyzed at a location in Spain over a three-year period. Clustering techniques with spherical trigonometry 
were applied, together with the kernel regression method, for their calculation. A multivariate data cube was 
investigated in [32], to establish whether climate and vegetation classes coincided. To do so, unsupervised 
clustering techniques were applied and differences between clustering of climate variables versus vegetation 
variables were studied. In [11], two clustering techniques and a neural network were applied, in an analysis 
of air quality in Greece and the impact of weather circulation patterns on urban air quality over a period 
of five-years. Principal Components Analysis (PCA) and Cluster Analysis (CA), were applied in [26] over a 
3-year period to analyze the mass concentrations of Sulfur Dioxide (SO2) and Particulate Matter (PM10) 
in Oporto. Finally, a clustering method for the study of multidimensional non-stationary meteorological 
time series was presented in [15] and the results were compared with standard fuzzy clustering techniques 
for a dataset with temperatures in Europe over forty years. In this study, unlike previous works, cluster 
evaluation measures, together with partitional and hierarchical clustering techniques, based on different 
distance measures, are employed to categorize different climate zones in Spain.

So, with these promising techniques, we can analyze the study of both the similarities of the main regional 
climates and their differences. The climate in Spain is highly variable, mainly due to its position in southern 
Europe, diverse relief, and extensive coastline. The Iberian Peninsula is in a temperate zone where currents 
of warm air and cold air merge to create its unique meteorological conditions. This great variability of 
climatic zones means that Spain is a European country of special interest for a meteorological study of the 
sort proposed in this study. Its various climatic subtypes [8] are reflected in the data gathered from four 
points: a Mediterranean island; an interior location on the meseta of the Iberian Peninsula; a city on the 
southern coastline; and, a city to the north-west of the Iberian Peninsula. The network of weather stations for 
meteorological data acquisition are constantly recording continuous data streams that are publicly accessible 
for research and analysis [23]. Described in detail in Section 3, these stations represent points within each of 
the four main Spanish climatic zones (continental, Atlantic, dry Mediterranean and typical Mediterranean).

Unlike the time window in a previous work [3] by the authors, a wider time window is used for data 
analysis in this study, running between 2004 and 2010. Additionally, a larger and more comprehensive set of 
techniques analyses the meteorological the extensive time series of data from the four different climatic zones 
(see Section 3). Firstly, four cluster evaluation measures yielded an accurate estimation of the recommended 
number of clusters for the dataset. Secondly, various clustering techniques applied to the original data set 
allowed us to assign the best possible data clustering technique. Four relevant partitional [2] techniques, one 
hierarchical [21] technique, and four cluster evaluation measures [17] were applied, combined with the most 
widely-used distance measures. The results were analyzed in two ways: through a study of the meteorology 
at the four selected locations and through clustering technique comparisons to establish the advantages of 
each method.

The rest of this paper is organized as follows. Section 2 presents the clustering techniques, distance criteria, 
and the cluster evaluation measures applied. Section 3 describes the real-life case study and, Section 4, the 
experimental results. Finally, Section 5 sets out the main conclusions and future lines of work.

2. Clustering techniques

This study reports the performance of several clustering techniques analyzing time series of data on 
meteorological conditions (described in Section 3), studying the climatology of different locations. Several 
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clustering methods [14,1] and clustering evaluation techniques: [5,28,6,30] have been applied in our analysis 
of the data sets with meteorological information,.

Clustering, a key unsupervised learning problems [4], can be defined as the process of organizing objects 
into groups that in some way have similar members. A cluster is a collection of objects that are similar to 
those in the cluster and are dissimilar to those belonging to other clusters. Clustering techniques can be 
divided, in general terms, into two categories: partitional and agglomerative. Partitional clustering algo-
rithms divide the data set into a specified number of clusters seeking to minimize certain criteria [13]. On 
the contrary, agglomerative clustering algorithms begin with each pattern in a distinct (singleton) cluster, 
and successively merge clusters together until a stopping criterion is satisfied [14].

The evaluation measures, the clustering techniques applied, and distance criteria are described in this 
section and their Matlab [19] implementations are applied in this study.

2.1. Cluster evaluation measures

Clustering validation evaluates the goodness of clustering results [17]. The two main categories of clus-
tering validation are external and internal. The main difference is whether external information (for which 
a priori knowledge of the dataset is required) is used for clustering validation. Internal validation measures 
can be used to choose the best clustering algorithm, as can the optimal numbers of clusters, with no further 
information needed. The following four internal validation measures were all applied in the present work.

Calinski–Harabasz Index. The Calinski–Harabasz Index [5] evaluates cluster validity based on the between-
cluster means and the within-clusters covariance matrix. It measures separation in relation to the maximum 
distance between cluster centers, and compactness, as the sum of distances between objects and their cluster 
center. As separate and compact clusters are desirable, the between-class is maximized and the within-class 
scatter matrix is minimized. The value of k that maximizes the Calinski–Harabasz index points to an 
estimation of the optimal number of clusters.

Silhouette Index. The Silhouette index [28] scores clustering performance, based on the pairwise difference 
of between-cluster and within-cluster distances. In addition, the optimal cluster number is determined by 
maximizing the value of this index. As the objective is to obtain clusters with minimum intra-cluster distance 
and maximum inter-cluster distance, high Silhouette Index values are desirable. Thus, the optimal partition 
is the partition with the highest Silhouette Index for parameter k.

Davies–Bouldin Index. Similar to the Calinski–Harabasz Index, the Davies–Bouldin Index [6] obtains clusters 
with the minimum intra-cluster distance and the maximum distance between cluster centroids. The minimum 
value of the index indicates a suitable dataset partition. The Davies–Bouldin Index [6] is calculated as follows: 
for each cluster, the similarities between each cluster C and all other clusters are computed, and the highest 
value is assigned to C in terms of its cluster similarity. The Davies–Bouldin Index may then be obtained by 
averaging all the cluster similarities; however, the smaller this index, the better the clustering result.

Gap Index. The Gap Index [30] uses the output of any clustering algorithm, comparing the change in 
within-cluster dispersion with that expected under an appropriate reference null distribution. The Gap 
Index is especially useful on well-separated clusters and when used with a uniform reference distribution in 
the principal component orientation.

2.2. Partitional clustering

k-means. The well-known k-means [9] is an algorithm for grouping data into a given number of clusters. 
Its application requires two input parameters: the number of clusters (k) and their initial centroids, which 
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can be chosen by the user or obtained through some pre-processing. Each data element is assigned to the 
nearest group centroid, thereby obtaining the initial composition of the groups. Once these groups are 
obtained, the centroids are recalculated and a further reallocation is made. The process is repeated until 
there are no further changes in the centroids. Given the heavy reliance of this method on initial parameters, 
a good measure of the goodness of the grouping is simply the sum of the proximity Sums of Squared Error 
(SSE) that it attempts to minimize, where p() is the proximity function, k is the number of the groups, cj
are the centroids, and n the number of rows:

SSE =
k∑

j=1

∑
x∈Gj

p(xi, cj)
n

(1)

In the case of Euclidean distance, the expression is equivalent to the global mean square error.

SOM k-means. Self Organizing Maps (SOM) [16] cannot provide precise clustering results, while the k-means 
statistic depends on the initial value and has difficulty finding the cluster centroid [22].

SOM k-means [16] is proposed to overcome the limitations of both methods. It combines SOM and 
k-means in the following way: when the SOM training finishes, the k-means algorithm is applied to refine 
the weights obtained by the SOM. When the SOM clustering finishes, k-means is also applied to refine the 
final result of clustering.

k-medoids. The objective function of the k-medoids (partitioning around medoids) algorithm is to partition 
a given dataset (X) into c clusters. The input and output arguments are those used by k-means [9]. The 
main difference between both methods is in their way of calculating cluster centers; in k-medoids, the new 
cluster center is the nearest data point to the mean of the cluster points [24]. The algorithm generates 
random cluster centers, rather than a partition matrix for initialization.

Cluster based on Gaussian Mixture Model. A Gaussian Mixture Model (GMM) [27] is a parametric prob-
ability density function represented as a weighted sum of Gaussian component densities. From a number 
of samples or observations, GMM calculates the estimation of the parameters of each of the distributions 
and subpopulations making up the mixture. GMM parameters are estimated from training data using the 
iterative Expectation–Maximization (EM) algorithm [10].

The EM algorithm enables parameter estimation in probabilistic models with incomplete data. The 
algorithm is a natural generalization of maximum likelihood estimation to the incomplete data case. The 
EM algorithm aims to maximize the density function of the data based on the parameters for likelihood 
estimation.

2.3. Agglomerative hierarchical clustering

Hierarchical clustering algorithms are either top-down or bottom-up approaches. Bottom-up algorithms 
treat each sample as a singleton cluster at the outset and then successively merge (or agglomerate) pairs 
of clusters until all clusters are merged into a single cluster that contains all the documents. Bottom-up 
hierarchical clustering is therefore called Hierarchical Agglomerative Clustering (HAC) [18]. Algorithms in 
this category generate a cluster tree or dendrogram by using heuristic techniques. A dendrogram consists 
of many U -shaped lines that connect data points in a hierarchical tree. The height of each U represents the 
distance between the two connected data points. The most popular algorithms that use merging to generate 
the cluster tree are called agglomerative. There are many implementations of agglomerative hierarchical 
algorithms [7]. Additionally, it may be highlighted that dendrograms are only shown to explain the bad 
results offered by Agglomerative hierarchical clustering, but a deeper analysis of these dendrograms lies 
outside the scope of the present paper.



80 Á. Arroyo et al. / Journal of Applied Logic 24 (2017) 76–89
2.4. Distance criteria

The above-mentioned clustering techniques take distance into account to cluster the data. Different 
distance criteria were defined and the distance measures applied in the study are described in this subsection.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and 
my-by-n data matrix Y , which is treated as my (1-by-n) row vectors y1, y2, ..., ymy, the various distances 
between the vector xs and yt are defined as follows:

Euclidean distance. This is the most common metric, where each centroid is the mean of the points in its 
cluster:

d2
st = (xs − yt)(xs − yt)′ (2)

where d is the distance from point x to centroid c.

Seuclidean distance. In Standardized Euclidean metrics (Seuclidean), each coordinate difference between 
rows in X is scaled, by dividing it by the corresponding element of the standard deviation:

d2
st = (xs − yt)V −1(xs − yt)′ (3)

where V is the n-by-n diagonal matrix the jth diagonal element of which is S(j)2, where S is the vector of 
standard deviations.

Cityblock distance. In this case, each centroid is the component-wise median of the points in that cluster.

dst =
n∑

j=1
|xsj − ytj | (4)

where the exponent P is a scalar positive value and j an observation in the vector X.

Cosine distance. This distance is defined as one minus the cosine of the included angle between points 
(treated as vectors). Each centroid is the mean of the points in that cluster, after normalizing those points 
to unitary Euclidean lengths:

dst = 1 − xsy
′
t√

(xsx′
s)(yty′t)

(5)

Correlation distance. In this case, each centroid is the component-wise mean of the points in that cluster, 
after centering and normalizing those points to a zero mean and a unit standard deviation.

dst = 1 − (xs − x̄s)(yt − ȳt)′√
(xs − x̄s)(xs − x̄s)′

√
(yt − ȳt)(yt − ȳt)′

(6)

Minkowski metric. The Minkowski distance is a metric in a normalized vector space which can be considered 
as a generalization of both the Euclidean distance and the Manhattan distance, as defined by:

dst = p

√√√√
n∑

j=1
|xsj − xtj |p (7)

where p is a scalar positive value of the exponent, s and t are the indexes of the rows of vector x and j is 
the index of the column of vector x.
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Fig. 1. Location of the four stations analyzed in Spain (source: Google Maps).

3. Real-life case study

This study presents an analysis of meteorological data recorded at four different points in Spain, a country 
with noticeable climatic variations. As mentioned in Section 1, the data under study were kindly supplied 
by the Spanish Meteorological Agency (AEMET) [23,20]. The following four stations were selected from the 
AEMET database, in view of their very different climatic conditions, typical of the four main climatic zones 
in Spain (see Fig. 1).

The following four data-acquisition stations supplied the data for this analysis:

1. Burgos Airport (Labeled as BU). Geographical coordinates: 42◦21′22′′N; 03◦37′17′′W; 891 meters above 
sea level, moderate continental climate. The continental climate is tempered by more rigorous climatic 
conditions from the Atlantic seaboard, with high diurnal and annual differences in temperature (frosty, 
icy winters below 0 ◦C) and generally low rainfall.

2. Santiago de Compostela Airport (Labeled as SA). Geographical coordinates: 42◦53′51′′N; 08◦24′38′W; 
370 meters above sea level, Atlantic climate. Rainfall is very abundant and usually at least 1,000 mm per 
month on average. Copious rains are well distributed throughout the year, with a peak in autumn-winter 
and a summer minimum, with more than 30 mm each month at low intensity. Under these conditions, 
the average relative humidity is high (80%).

3. Almeria Airport (Labeled as AL). Geographical coordinates: 36◦50′47′′N; 02◦21′25′′W; 21 meters above 
sea level, Mediterranean dry climate. The dry Mediterranean climate is given as a transition between 
the Mediterranean climate and the desert climate and is characterized by drought most of the year. 
The Mediterranean basin, where the typical Mediterranean weather patterns may be found, has a 
warmer climate than in the east (see Fig. 1) and less rainfall, ranging between 200 and 400 mm a 
month, concentrated around the colder seasons. Winter temperatures are hot, the summer is dry, with 
mild temperatures on the coast and very high (above 25 ◦C) temperatures in inland areas; the average 
maximum temperatures can exceed 45 ◦C in the event of heat waves.

4. Palma de Mallorca Port (Labeled as PM). Geographical coordinates: 39◦33′12′′N; 02◦37′31′′E; 3 meters 
above sea level, typical Mediterranean climate. This climate is characterized by hot and dry summers, 
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with average temperatures above 22 ◦C and humid and rainy winters with mild temperatures. In the 
colder months, there is more rain, and the warmest month is the driest month.

On a timeline, data were selected from 2004 up until 2010. Year 2003 was not included as it was charac-
terized by extreme values, particularly a heat wave during the month of August, in three of the locations 
under analysis. So, together with non-availability of data since 2011, those reasons explain the selected time 
window in the present study. There are a total of 10,162 samples as data are collected on a daily basis (365 
days for 7 years), that are about 2500 samples for each one of the 4 stations and one sample per day. Some 
data were omitted because of missing or corrupt data information. The main parameters in the study were 
the following six (daily average) meteorological variables:

1. Maximum absolute temperature: maximum temperature over the whole day (C◦).
2. Minimum absolute temperature: minimum temperature over the whole day (C◦).
3. Wind speed: maximum air gust recorded over the whole day (m/s).
4. Number of hours of sunshine in the day (hours).
5. Maximum absolute atmospheric pressure in tenths of a hectopascal over the whole day (hPa).
6. Minimum absolute atmospheric pressure in tenths of a hectopascal over the whole day (hPa).

4. Experiments and results

In a previous work, Principal Component Analysis (PCA) [12] was initially applied to the sample dataset 
with the aim of identifying its general inner structure. The PCA projection was used to gain an approximate 
idea of the number of clusters to be selected in the subsequent experiments. One characteristic of PCA is that 
clusters can be identified with the naked eye in a graphical representation, without any label or assignment 
of each sample to a certain group of data. These techniques are very useful to gain general knowledge about 
the structure of unlabeled datasets. In the dataset under analysis in this study, three main clusters of data 
were identified in the PCA projection. Subsequently, some cluster evaluation measures (see Section 2) were 
applied to obtain a recommended number of clusters. Once the initial approximate number of clusters was 
obtained, several clustering techniques were compared according to the estimated number of clusters.

The results obtained by those techniques are listed and described in this section: Tables 1–5 show the 
parameter values of the applied techniques and the allocation of data (by the meteorological station they 
come from: BU, AL, SA, and PM) to the defined number of clusters (k). Additionally, computing time is 
also shown for comparison with the different methods.

Table 1 shows the information on the cluster evaluation performed by applying the different measures 
with the Gaussian mixture distribution algorithm. In this table, column ‘k’ represents the optimum number 
of clusters selected by each one of the measures from the ‘InspectedK’ parameter (taking values from 2 
to 6), ‘Time’ is the execution time (in seconds) and ‘Criterion Values’ corresponding to each proposed 
number of clusters in ‘InspectedK’, stored as a vector of numerical values. Each value of this vector is 
calculated according to the evaluation measure on cluster centroids, the number of points in each cluster, 
the sum of Squared Euclidean and the number of clusters. In Gap, ‘Reference Distribution’ is the reference 
data generation method, and ‘LogW’ is the natural logarithm of W based on the input data, stored as a 
vector of scalar values where W is the within-cluster dispersion computed using the distance measurement 
distance.

The output of the four measures applied (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette) was 
similar: the value of k obtained was three in the case of Calinski–Harabasz, Gap and Silhouette while 
Davies–Bouldin gave a value of two This result points to the usefulness of the k parameter, required as an 
input for the subsequent clustering techniques. The Gap evaluation measure was the slowest in terms of 
computing time.
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Table 1
Cluster evaluation.

Cluster Evaluation Measure K Time (s) Parameters
Calinski–Harabasz 3 2.73 Criterion Values: [38489.78 86717.77 63255.07 49307.77 45169.55]
Davies–Bouldin 2 2.29 Criterion Values: [0.34 0.39 0.93 1.32 1.55]
Gap 3 366.63 Criterion Values: [1.25 2.24 2.15 2.17 1.92]

Reference Distribution: ‘PCA’.
LogW: [−7.88 −9.20 −9.29 −9.40 −9.48]

Silhouette 3 16.36 Criterion Values: [0.86 0.89 0.74 0.44 0.34]

Table 2
Initial k-means clustering results.

K Distance Time (s) SumD Cluster Samples Allocation (%)
BU SA AL PM

2 Seuclidean 0.10 [4.46E−05 0.0003] [100 0] [4 96] [0 100] [0 100]
2 Cityblock 0.11 [0.74 2.37] [100 0] [11 89] [0 100] [0 100]
2 Cosine 0.10 [0.11 0.083] [64 36] [67 33] [37 63] [41 59]
2 Correlation 0.10 [0.090 0.089] [69 31] [71 29] [32 68] [21 79]
3 Seuclidean 0.13 [4.40E−05 3.06E−05 2.54E−05] [0 100 0] [0 0 100] [100 0 0] [100 0 0]
3 Cityblock 0.13 [0.47 0.90 0.53] [0 0 100] [100 0 0] [1 99 0] [1 99 0]
3 Cosine 0.18 [0.06 0.04 0.04] [30 45 25] [48 36 16] [50 3 47] [47 8 45]
3 Correlation 0.22 [0.041 0.053 0.046] [9 48 43] [22 36 42] [49 19 32] [59 11 30]

Table 2 shows the results obtained for the k-means with different distance criteria and the two suggested 
values for the k parameter (2 and 3). In this table, ‘Distance’ is the distance criterion applied (see Section 2) 
and ‘SumD’ is the within-cluster sums of point-to-centroid distances in the k-by-1 vector. The Cluster 
Samples Allocation represents the percentage of samples from each one of the stations (BU, AL, SA and 
PA) that are allocated to each one the clusters; e.g. [1000] represents 2 clusters and 100% of samples allocated 
to the first cluster and 0% to the second one.

Two central points may be highlighted in Table 2. Firstly, the notable difference between the meteorology 
of Burgos and of the other three locations, as well as the similar Mediterranean conditions in Almeria and 
Palma de Mallorca. This can be seen in the following tendency: the samples belonging to Burgos tend to 
remain together (especially when applying ‘Seuclidean’ and ‘Cityblock’ distances), while the subdivision of 
samples in different clusters is more usual for the locations at Almeria and Palma de Mallorca. This is clearly 
shown in the ‘Cosine’ and ‘Correlation’ distance measures. In all cases, the highest percentage of samples 
from Mallorca and Almeria are included in the same clusters. Samples from Santiago de Compostela are 
split into more than one cluster, but only when k equals 2 and distance is ‘Cosine’ are these samples located 
in the same cluster as the samples from Burgos.

Although the recommended value for the k parameter is 2 and 3 (see Table 2), further experiments were 
conducted to see whether k-means is able to cluster data from Palma de Mallorca and Almeria in different 
clusters. Table 3 shows the clustering results obtained by increasing the value of k up to 6. These results 
are worth checking to see whether higher values of k lead to sample redistribution in the new clusters.

By raising the k parameter to 6, it can be seen how samples from Burgos all remain together allocated 
in the same cluster when applying ‘Seuclidean’ distance, and in 3 out of 4 cases when applying ‘Cityblock’. 
Regarding the samples from Santiago de Compostela, in most cases they tend to gather in single cluster 
(different clusters than those for Burgos, Palma de Mallorca and Almeria). The samples from Almeria and 
Palma de Mallorca are distributed into the new clusters, but are mainly mixed up in the same cluster. No 
one cluster only gathers data from one of these stations, although there are empty clusters. At k values 
higher than 4, the samples from the two Mediterranean locations are still found together, which means that 
a value for the k parameter equal to 3 would be sufficient to obtain the best sample allocation

It is also worth mentioning the great influence of the distance criterion applied. While ‘Cosine’ and 
‘Correlation’ distances usually split samples from the same location in different clusters, ‘Seuclidean’ and 
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Table 3
Additional k-means clustering results (k = 4, 5 and 6)
K Distance Time (s) SumD Cluster Samples Allocation (%)

BU SA AL PM
4 Seuclidean 0.17 [3.06E−05 1.92E−05 

2.53E−05 1.08E−05]
[100 0 0 0] [0 0 100 0] [0 64 0 36] [0 57 0 43]

4 Cityblock 0.17 [0.53 0.43 0.47 0.27] [100 0 0 0] [0 0 100 0] [0 52 0 48] [0 55 1 44]
4 Cosine 0.24 [0.035 0.041 0.030 0.027] [29 19 40 12] [28 43 23 6] [30 33 1 36] [23 37 3 37]
4 Correlation 0.18 [0.033 0.026 0.023 0.031] [38 6 16 40] [32 14 34 20] [22 41 29 8] [22 53 21 4]
5 Seuclidean 0.26 [7.50E−05 3.06E−05 

2.47E−05 9.79E−06 
7.87E−37]

[0 100 0 0 0] [0 0 100 0 0] [67 0 0 33 0] [71 0 0 29 0]

5 Cityblock 0.21 [0.23 0.53 0.20 0.48 0.18] [0 100 0 0 0] [0 0 0 100 0] [44 0 29 0 27] [42 0 34 0 24]
5 Cosine 0.29 [0.034 0.041 0 0.080 0.027] [28 19 0 40 13 [28 43 0 23 6] [30 33 0 1 36] [23 37 0 3 37]
5 Correlation 0.30 [0.05 0 0 0.041 0.046] [48 0 0 9 43] [36 0 0 23 41] [19 0 0 49 32] [11 0 0 59 30]
6 Seuclidean 0.24 [2.70E−06 3.06E−05 

2.44E−05 6.06E−06 
4.42E−06 4.80E−06]

[0 100 0 0 0 0] [0 0 100 0 0 0] [15 0 0 40 27 18] [18 0 0 39 28 15]

6 Cityblock 0.23 [0.069 0.90 0.091 0.096 0.47 
0.072]

[22 0 33 26 0 19] [0 0 0 0 100 0] [0 99 0 0 1 0] [0 99 0 0 1 0]

6 Cosine 0.26 [0.018 0.019 0.020 0.013 
0.021 0.014]

[5 34 16 1 14 30] [22 17 18 3 28 12] [28 1 16 32 19 4] [29 2 7 33 28 1]

6 Correlation 0.26 [0.018 0.009 0.017 0.013 
0.016 0.013]

[18 25 30 0 19 8] [25 15 9 4 25 22] [26 1 2 33 14 24] [25 0 1 46 9 19]

Table 4
SOM k-means clustering results.

K Type Err Time (s) Cluster Samples Allocation (%)
BU SA AL PM

2 Seq 0.00037 6.64 [0 100] [96 4] [100 0] [100 0]
2 Batch 0.00037 0.20 [100 0] [4 96] [0 100] [0 100]
3 Seq 9.99E−05 7 [100 0 0] [0 0 100] [0 100 0] [0 100 0]
3 Batch 9.99E−05 0.21 [0 0 100] [100 0 0] [0 100 0] [0 100 0]

‘Cityblock’ generally keep the samples from the same location in the same cluster. This is because ‘Cosine’ 
and ‘Correlation’ measures the difference in the angle between two vectors and not the difference in the 
magnitude between two vectors [13]. Finally, regarding the computing time needed to run the k-means 
algorithms, it might be said that ‘Seuclidean’ and ‘Cityblock’ provide the shortest response time when k is 
greater than 2. The ‘SumD’ parameter has the lowest values for ‘Seuclidean’ distance; the clusters produced 
in this case are therefore more compact than those obtained by applying the other three distance measures.

In Table 4, the results obtained by SOM k-means are shown. In this table, ‘Type’ is the type of algorithm 
applied in the SOM neuron (sequential or batch) training process. In the traditional sequential training, 
samples are presented to the map one at a time, and the algorithm gradually moves the weight vector towards 
them. The batch algorithm is an online algorithm that aims to find a deterministic iterative procedure for 
the computation of points. Its speed is limited by its use of only the diagonal part of the Hessian matrix 
rather than the full matrix. In the batch training, the dataset is presented to the SOM as a whole, and 
the new weight vectors are weighted averages of the data vectors [31]. Additionally, ‘Err’ shows the total 
quantization error for the mapping, according to the distance from any given data point to a cluster center 
weighted by the membership grade of that data point.

One of the first conclusions that can be drawn from Table 4 is that SOM k-means is slower than k-means 
in both cases but especially for ‘Seq’ type. Regarding the cluster sample allocation, SOM k-means offers 
similar results to k-means (Table 2) when applying ‘Seuclidean’ distance; because SOM k-means also uses 
‘Euclidean’ distance.

In Table 5 the results obtained by means of k-medoids to the original data set are shown.
By applying k-medoids, the cluster sample allocation is similar to the one obtained by k-means (Table 2), 

both ‘Cosine’ and ‘Correlation’ split the samples into more than one cluster, even for the samples of Burgos 
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Table 5
k-medoids clustering results.

K Distance Time (s) SumD Cluster Samples Allocation (%)
BU SA AL PM

2 Euclidean 1.98 [1.51 0.52] [100 0] [90 100] [0 100] [0 100]
2 Seuclidean 0.31 [0.0003 4.67E−05] [0 100] [96 4] [100 0] [100 0]
2 Cosine 0.29 [0.074 0.12] [33 67] [29 71] [59 41] [57 43]
2 Correlation 0.68 [0.09 0.089] [69 31] [71 29] [32 68] [21 79]
3 Euclidean 0.31 [0.23 0.26 0.44] [0 100 0] [100 0 0] [0 0 100] [0 0 100]
3 Seuclidean 0.30 [3.13E−05 4.47E−05 2.55E−05] [100 0 0] [0 0 100] [0 100 0] [0 100 0]
3 Cosine 0.39 [0.052 0.040 0.062] [26 44 30] [18 31 51] [49 3 48] [47 6 47]
3 Correlation 0.39 [0.055 0.055 0.031] [42 51 7] [48 36 16] [40 18 42] [38 11 51]

Table 6
Cluster based on Gaussian Mixture Models.

K Covariance Nlogl Time (s) Cluster Samples Allocation (%)
BU SA AL PM

2 Full −5.38E+05 0.30 [40 60] [39 61] [49 51] [61 39]
2 Diagonal −5.37E+05 0.30 [100 0] [4 96] [0 100] [0 100]
3 Full −5.44E+05 0.61 [51 49 0] [41 59 0] [1 8 91] [1 12 87]
3 Diagonal −5.43E+05 0.31 [51 49 0] [41 59 0] [1 8 91] [1 12 87]

Table 7
Agglomerative hierarchical clustering results.

K Distance Time (s) Cluster Samples Allocation (%)
BU SA AL PM

2 Minkowsky 1.28E+03 [100 0] [0 100] [0 100] [0 100]
2 Cityblock 1.28E+03 [100 0] [0 100] [0 100] [0 100]
2 Euclidean 1.34E+03 [100 0] [0 100] [0 100] [0 100]
2 Seuclidean 1.32E+03 [0 100] [0 100] [0 100] [0 100]
3 Minkowsky 1.27E+03 [0 0 100] [0 100 0] [0 100 0] [0 100 0]
3 Cityblock 1.27E+03 [0 0 100] [0 100 0] [0 100 0] [0 100 0]
3 Euclidean 1.27E+03 [0 0 100] [0 100 0] [0 100 0] [0 100 0]
3 Seuclidean 1.27E+03 [0 100 0] [0 100 0] [0 100 0] [0 100 0]

for both values of k. The samples from Almeria and Palma de Mallorca remain together in the same cluster 
in most cases. The ‘SumD’ parameter gets the best value for ‘Seuclidean’ distance, which means more 
compact clusters in these cases.

Table 6 shows the results obtained by applying the GMM with the EM algorithm. Means of the ‘Covari-
ance’ parameter: diagonal if the covariance matrices are restricted to the ‘Diagonal’, and otherwise ‘Full’. 
The ‘Nlogl’ parameter expresses the negative log-likelihood of the data.

When applying clustering based on GMM with the EM algorithm, the execution time was greater when 
the covariance was ‘Full’ than when the covariance was ‘Diagonal’ and when parameter k equaled 3, but 
the difference is not very relevant. Regarding the sample process allocation, the samples belonging to the 
location of Burgos were only grouped in one cluster when the covariance was diagonal and k equaled 2. 
In the other three cases, the samples from Burgos were distributed in more than one data cluster; quite a 
different result from those obtained in the above experiments (Tables 2 to 5). The samples from Almeria 
and Palma de Mallorca were assigned to different cluster in most cases. The samples from Santiago de 
Compostela were assigned to different clusters in all cases. The ‘Nlogl’ parameter gave similar results in all 
experiments.

Table 7 shows the very different results of applying the agglomerative hierarchical clustering technique 
to the original dataset in comparison with those obtained by partitional methods (Tables 1–6).

The main difference between agglomerative hierarchical clustering and the three previous methods is that 
the former allocates the samples to clusters according to the location of the stations, with an accuracy of 
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Fig. 2. Dendrogram with 30 leaf nodes (‘Euclidean’ distance criterion and ‘Average’ linkage method).

100%, in all cases. This result means that data from the same location are always allocated to the same 
cluster. In all cases, all the samples from Almeria Palma de Mallorca, and Santiago de Compostela are 
assigned to the same cluster. In one case, the samples from the four locations are assigned to the same 
cluster, which indicates the faulty performance of this technique in this case study. These results are quite 
different from those shown in Tables 2 to 6, where the partitional techniques were able to differentiate the 
samples from Santiago de Compostela from the samples from Almeria and Palma de Mallorca. These results 
are not consistent with the description of the case study as the samples from Burgos at least should be 
assigned to a different cluster than the samples from the other three locations, as is evident from the previous 
study applying Principal Component Analysis (PCA). Observing the dendrograms generated in Fig. 2 and 
Fig. 3, which are a visual complement of the agglomerative method, it can be seen that the samples from 
Burgos are clearly distinguishable alongside the samples from the other three locations. Another drawback 
is that this technique is highly demanding in terms of computing time, regardless of the number of selected 
clusters or the distance metric applied. The technique requires so much computer time, because it starts 
with individual samples and it generates groups from among them, which is not appropriate when the 
number of samples is so as high as in this case study.

As complementary information, Fig. 2 shows the dendrogram for agglomerative clustering with ‘Eu-
clidean’ distance criterion and ‘Average’ linkage method for computing the distance between clusters. 
Number of leaf nodes: 30. This value is high enough to understand the subdivision process performed 
and to see the dendrogram output clearly in graphical form.

The samples are distributed in leafs as follows. Samples from Burgos are all grouped in leaf 1. Most 
samples from Almeria are grouped in leaf 2 with a few samples in leafs 12, 13, 14, 15 and 16. Most samples 
from Santiago de Compostela are grouped in leaf 2 with a few samples in leafs 18, 19, 20, 21, 22, 23, 24, 25, 
26 and 27. Samples from Palma de Mallorca are located in leaf 2 and a few samples in leafs 15, 28, 29 and 
30. As shown in Tables 2 to 7, the samples from Burgos were grouped together and were separated from the 
samples of the other three places. The fact that most of the samples were grouped in only two leafs (1 and 
2) and that many of the leafs are empty may also be highlighted. These results underline the conclusions 
that may be drawn from the results shown in Table 7. On the one hand, the high levels of compaction in 
samples from Burgos are noteworthy, all of which are grouped on one leaf. On the other hand, the clear 
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Fig. 3. Dendrogram with 30 leaf nodes (‘Euclidean’ distance criterion and ‘Complete’ linkage method).

differentiation of climatic conditions proper to Burgos from those of the other three locations may be seen, 
as in the initial division, the samples from Burgos were separated from the samples of the other three 
locations.

Fig. 3 shows the dendrogram (30 leaf nodes) for agglomerative clustering with the ‘Euclidean’ distance 
criterion and the ‘Complete’ linkage method for computing the distance between clusters.

In the dendrogram shown in Fig. 3, samples from Burgos are grouped in leafs 1, 2, 3, 4, 5, 7, 9, 13, 15, 25 
and 26, while samples from Almeria are grouped in leafs 8, 10, 11, 12, 14, 15, 16, 17 and 18. Samples from 
Santiago de Compostela are grouped in leafs 6, 10, 19, 30, 28, 25, 24, 23, 22, 21, 20 and 19 while samples 
from Palma de Mallorca are grouped in leafs 8, 10, 11, 12, 14, 16, 17, 18 and 19. All the samples from 
Burgos are located in the large cluster to the right of the dendrogram, although the samples are split into 
more leaves than in the dendrogram with the ‘Average’ linkage method (Fig. 2). Samples from the other 
three locations are also distributed in more leafs than in the previous result (Fig. 2). In the dendrogram 
shown in Fig. 3, there are no empty leafs. In this type of dendrogram that applies the ‘Complete’ criterion 
linkage, having all the leafs with any samples may represent an easier way than in Fig. 2 of visualizing the 
formation of large data groups with the naked eye.

5. Conclusions and future work

The main conclusions derived from the previously explained results (see Section 4) can be divided into 
two groups, firstly, those regarding the analysis of meteorological conditions in the analyzed case study. 
Secondly, those related to the performance of the different clustering techniques, criteria, and measures 
applied to the case study.

Climatological conditions are not analyzed in the present work for the following reasons: the time period 
under study is not long enough to consider the climates of the four locations in the study. Hence, conclusions 
regarding a change in the weather over the period under analysis cannot be drawn and both the available 
information and the results lend no support to long-term forecasting of climate conditions. Regarding 
the meteorological conditions at the four selected locations over the time period of the study, the notable 
difference between the meteorology in Burgos and at the other three locations may be highlighted. A different 
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meteorology from the other three sites may also be appreciated at Santiago de Compostela, but not as 
pronounced as in the case of Burgos. However, the similarity of the mean daily meteorological data from 
Palma de Mallorca and Almeria are very similar and none of the methods were capable of splitting those 
samples into different clusters. The samples from the two places with different Mediterranean climates 
(Almeria and Palma de Mallorca) tended to remain together in the same clusters.

The appropriateness of applying the cluster evaluation measures may be highlighted as a first step, in 
relation to the behavior of the clustering techniques. The results of the four main measures raises the 
question of why three of them suggest the same value for k; important for the selection of the k parameter 
considered in subsequent experiments. In a general comparison of the clustering techniques, with the selected 
distance criterion as a key factor, k-means, k-medoids and SOM k-means attain similar results. Moreover, 
it may be concluded that k-means is the best technique in terms of computational load for the data under 
analysis. Analyzing the distance measures applied, ‘Euclidean’ distances are usually the most reliable, while 
‘Cosine’ and ‘Correlation’ distances have a tendency to split the samples from the same location into 
more than one cluster and not always in the most reliable way. GMM generates results that are similar 
to those obtained by the three previously mentioned techniques, although in some cases some inconsistent 
results have been obtained, handing out samples in different clusters that should be together. The different 
results of the hierarchical agglomerative technique should also be emphasized when compared with the 
partitional clustering techniques. In many cases, the agglomerative hierarchical clustering technique showed 
no reliable response, and failed to allocate samples from different locations in different clusters. Unlike the 
PCA technique used in the previous study, no single technique was able to sort the samples from the four 
locations into separate clusters.

The clustering techniques analyzed in this case study are useful to validate the meteorology of the four 
selected locations, corresponding to the four different climatic zones in Spain. By applying these techniques 
to the case study, it is easier to know which samples correspond to which climatic zone, which is much 
more difficult than applying dimensionality reduction. Another advantage is the possibility of analyzing the 
difference between the four climates and of inspecting the different measures returned by the techniques. 
The grade of compactness of each cluster may also be inspected. All of these finding indicate the variability 
of each climate and the differences between zones.

As future work, a hybrid intelligent system combining dimensionality reduction and clustering tech-
niques is proposed, to demonstrate the complementarity of these two paradigms for the analysis of high-
dimensionality climate data sets from various regions in the Iberian peninsula.
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