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Abstract
This paper proposes an ensemble framework for gene selection, which is aimed at addressing instability problems presented 
in the gene filtering task. The complex process of gene selection from gene expression data faces different instability prob‑
lems from the informative gene subsets found by different filter methods. This makes the identification of significant genes 
by the experts difficult. The instability of results can come from filter methods, gene classifier methods, different datasets of 
the same disease and multiple valid groups of biomarkers. Even though there is a wide number of proposals, the complexity 
imposed by this problem remains a challenge today. This work proposes a framework involving five stages of gene filtering 
to discover biomarkers for diagnosis and classification tasks. This framework performs a process of stable feature selection, 
facing the problems above and, thus, providing a more suitable and reliable solution for clinical and research purposes. Our 
proposal involves a process of multistage gene filtering, in which several ensemble strategies for gene selection were added 
in such a way that different classifiers simultaneously assess gene subsets to face instability. Firstly, we apply an ensemble of 
recent gene selection methods to obtain diversity in the genes found (stability according to filter methods). Next, we apply an 
ensemble of known classifiers to filter genes relevant to all classifiers at a time (stability according to classification methods). 
The achieved results were evaluated in two different datasets of the same disease (pancreatic ductal adenocarcinoma), in 
search of stability according to the disease, for which promising results were achieved.

Keywords Gene selection · Filter method · Ensemble method · Wrapper method · Machine learning · Data mining · Gene 
expression data

1 Introduction

The study of gene expression data from the new chip tech‑
nologies is of great interest for bioinformatics (and func‑
tional genomics), because they allow us to simultaneously 
analyze expression levels from hundreds of thousands of 
genes in a living organism sample. This feature makes gene 
expression analysis a fundamental tool of research for human 
health. It provides identification of new genes that are key 
factors in the genesis and development of diseases. However, 
the exploration of these large data sets is an important, yet 
difficult problem. The development of new hybrid methods 
fusing statistical, data mining and machine learning tech‑
niques to discover knowledge can help to face the challenges 
imposed by this technology [1, 2]

An area playing a major role in the analysis of gene 
expression data is gene selection. Gene selection involves 
the study of genes significant for a target disease. Such 
genes should be able to differentiate samples from different 
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populations [3]. The discovery of these genes is the basis 
for the development of the diagnosis and prognosis method‑
ologies of diseases. Hence, pharmaceutical companies are 
concerned about the identification of genes that can be modi‑
fied across drugs [4–6]. Due to their importance, those genes 
are known as informative genes or differentially expressed 
genes, since they can differentiate distinct classes or sub‑
types of a target disease.

A common problem related to the large list of filter meth‑
ods proposed in the literature is its instability [7, 8]. The 
instability problem considers that the significance of the dis‑
covered genes is closely related to the applied filter and clas‑
sifier method, as well as specific characteristics of the dataset 
used. This indicates that when evaluating statistically sig‑
nificant genes in the laboratory, they are not really relevant 
to the target disease. Solutions to this challenge should be 
focused on assessing genes with respect to different classi‑
fiers or using measures regardless of the classification model 
[3, 9, 10]. Hence, our research consists of applying hybrid 
techniques to the gene selection process to build more stable 
solutions [5, 11, 12]. In this case, we have developed a five‑
staged ensemble framework, where each stage is responsible 
for carrying out a filtering process of genes significant for 
the next stage. The instability problem is faced by looking 
for a gene subset from the result of the previous stages, being 
able to simultaneously maximize the accuracy of a classifier 
set. The early stages of the framework are responsible for 
processing and removing noise from the dataset by using 
two ranking‑based filter methods (simple methods). After 
that, different gene selection methods (compound methods) 
are applied to the result obtained from the stages above. The 
genes achieved by each applied method are combined in a 
single set to be subsequently filtered through two wrapper 
methods. At this point, we introduce two wrapper methods 
based on a list of different classifiers outlined in the frame‑
work. Then, a new gene set is created from the individual 
results reached by each combination of wrapper method and 
used classifier. Finally, we provide an algorithm to filter a 
gene subset from the set above by selecting a combination 
of k genes able to simultaneously maximize the accuracy of 
all classifiers. In addition, the results achieved for one of the 
used datasets were extended to other datasets of the same 
disease, for which it turned out that the genes discovered 
in the first dataset were also significant in the latter dataset.

The research developed in this area (gene selection) has 
generated a wide list of gene selection methods (filter meth‑
ods), designed to discover informative gene subsets associ‑
ated with a target annotation. For their better understanding, 
these methods have been divided into four main categories: 
filters, wrappers, embedded and ensemble [13–16]. Filter 
methods determine the relevance of features by ranking them 
based on statistical criteria, whereas wrappers use a classi‑
fier to determine feature sets with high discrimination power. 

Like wrappers, embedded methods are based on learning 
methods, but allowing to interact with them, which decreases 
the runtime taken by wrappers. Meanwhile, ensembles are 
the most recent among feature selection methods and merge 
different strategies to face instability problems presented 
by other methods due to data perturbations. Some of the 
most recent ensemble methods proposed in literature are: 
[17], which states an ensemble method called EGSG to 
select multiple gene subsets for classification purposes. The 
method selects salient gene subsets from gene expression 
data based on information theory and approximate Markov 
blanket. In [18], an ensemble of filters methods and classi‑
fiers has been proposed, where five methods of gene filter‑
ing are applied using different metrics. The result of each 
method is used to train a specific classifier and the outputs 
of the used classifiers are combined through a voting pro‑
cess. Recently in [19, 20], new ensemble approaches have 
been proposed. In [19], a feature selection method based on 
a bi‑objective genetic algorithm has been proposed. Con‑
cepts of the theories of rough set and multivariate mutual 
information (information theory) are used as objectives in 
the fitness function of the genetic algorithm. The ensemble 
is built from different feature selectors based on the genetic 
algorithm to yield a much generalized feature subset. In [20], 
two gene selection approaches are described. The approach 
of homogeneous distributed ensemble deals with generat‑
ing n models using the same feature selection method but 
different training data, whereas the heterogeneous central‑
ized ensemble deals with n models generated using differ‑
ent feature selection methods, but the same training data. 
Unlike previous works, our framework provides an approach 
of successive reduction based on different linked filtering 
stages, which are responsible for reaching different stability 
levels about filter methods, classification methods and the 
data domain. Additionally, the framework has been designed 
in a flexible way, in the sense that new gene selection and 
classification methods can be added to improve the global 
filtering process.

1.1  Pancreatic Ductal Adenocarcinoma 
as Experimental Data

Pancreatic ductal adenocarcinoma (PDAC) has been con‑
sidered as one of the most aggressive types of cancer [21], 
having a 5‑year survival rate of 8% [22]. Pancreatic cancers 
are usually asymptomatic in early stages, obstructing early 
detection and, thus, contributing to low survival. Moreover, 
the available chemotherapeutic drugs exhibit little effec‑
tiveness in PDAC. This phenomenon has been related to 
the dynamic relation between the stroma and tumor cells 
[23]. PDAC originates due to a successive accumulation of 
mutations affecting different oncogenes and tumor suppres‑
sors. Many of these genes have a major role in key signaling 
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pathways. Genes such as RAS, AKT, CDKN2A, TP53 and 
DPC4, among others, are affected by punctual mutations or 
allelic loss in pancreatic cancer [24, 25]. In addition to all 
the above, PDAC has been identified as one of the cancers 
with high drug resistance. In this regard, we have that the 
desmoplastic stroma constitutes a protective barrier against 
drugs, which hinders the effectiveness of any medical treat‑
ment applied.

Pancreatic ductal adenocarcinoma is a particularly unsta‑
ble cancer from the molecular point of view. Unfortunately, 
gene expression datasets often present problems such as dif‑
ferences in methodology applied to their preparation, low 
sample size, unbalanced classes, and missing data, among 
others. Thus, genes obtained through gene selection methods 
present low generalization capability for classification under 
different datasets. In consequence, there is a wide range 
of approaches for obtaining a reduced set of biomarkers 
potential for a given disease. However, by considering the 
biological properties of PDAC and its instability, ensemble 
approaches qualify for finding more consistent signatures 
by involving enough genes to classify different datasets. 
This allows us to select a reduced subset from the signature 
in accordance with the datasets used. The current proposal 
faces the mentioned problems by finding a stable group of 
biomarkers to simultaneously optimize classification from 
different datasets. For this purpose, two different datasets 
have been used to select a biomarker set by means of several 
filtering stages.

To reach the goals of this research, the rest of this paper 
has been structured as follows. Section 2 explains the main 
features of the proposed framework and the filtering process 
in stages. Section 3 outlines the experiments developed to 
evaluate the performance of the framework for two datasets 
of the same disease (PDAC). Section 4 deals with the con‑
clusions of this research, whereas the used references have 
been listed at the end of this paper.

2  An Ensemble Proposal for Successive 
Filtering of Relevant Genes (EF‑GMS)

This section deals with the explanation of each component 
of our gene selection proposal, which focuses on five linked 
stages, each developing a different task of gene filtering 
aimed at the next stage, until reaching the expected result. 
Figure 1 shows a general scheme of the steps developed by 
our approach, EF‑GMS. By way of summary, we can say 
that our proposal consists of a starting stage (Stage‑I), where 
different tasks of data preprocessing are applied to the input 
raw dataset. The following stage (Stage‑II) oversees remov‑
ing noise from the resulting data. Stage‑III is responsible 
for running a set of gene selection methods on its input data 
and joining the results in a single set. Stage‑IV finds gene 

subsets from its input set by maximizing the accuracy of 
each classifier separately. For this end, two wrapper meth‑
ods are run by using each classifier given in the framework. 
The gene subsets achieved for each classifier are joined in a 
single set. Finally, Stage‑V oversees stability in the gene set 
of the stage above. To do this, it runs an algorithm which 
can choose a combination of k genes, simultaneously maxi‑
mizing the accuracy of all involved classifiers. Note that the 
idea pursued by this framework is to successively reduce the 
initial dataset, based on different criteria to achieve generic 
genes, until reaching a small subset of relevant genes. We 
will describe in detail each stage shown in Fig. 1.

2.1  Stage‑I: Data Preprocessing

As previously explained, this stage is responsible for clean‑
ing the input raw data, where different data treatments are 
applied, so that this stage prepares the data for the next 
stages to use them. The tasks involved in this stage among 
others are removing control and constant probes, missing 
value treatment and data normalization, if needed. Once all 
needed processes have been carried out, a new subdataset is 
built for the next stage.

2.2  Stage‑II: Noise Removing Methods

This stage is responsible for removing noise in the data 
and involving two gene filter methods, which are linked to 
make a double filter process through different techniques. 
By applying the Mann–Whitney test to the input dataset as 
the first filter method, we will have a gene significance test, 
relating genes to the studied disease. The Mann–Whitney 
test is commonly used in the literature as a filter method to 
filter out differentially expressed genes according to tissue 
sample classes [26]. Moreover, this test does not assume a 
specific data distribution (nonparametric test) as is the case 
of other tests. This test relates samples belonging to the 
same population to the null hypothesis, whereas samples 
belonging to different population are related to the alterna‑
tive hypothesis [27]. The Mann–Whitney test establishes a 
ranking of significant values (p values) for the genes of a 
dataset. Hence, genes with p value < 0.05 are taken out as 
genes rejecting the null hypothesis and so they are the most 
statistically significant. Therefore, such genes are passed to 
the following filter method of this stage, S2N.

S2N (Signal to noise [3, 28]) is the second filter method 
applied to reduce noise from the input dataset to this 
stage. S2N computes the existing correlation of each gene 
according to the positive and negative class of the dataset. 
Hence, this statistic assigns positive values to genes cor‑
related with the positive class, whereas negative values 
are assigned to genes correlated with the negative class 
of the dataset. To select the most significant genes related 



 Interdisciplinary Sciences: Computational Life Sciences

1 3

to both classes, a threshold should be fixed in such a way 
that genes with big positive and negative values can be fil‑
tered out. The result of this method is a new dataset (with‑
out noise) whose genes can be considered significant for 

PDAC and, therefore, the following stages of the frame‑
work can continue to apply their filtering processes based 
on other criteria to ensure stability in the final result.

Fig. 1  Flowchart representing the five linked stages of the gene selection process of the EF‑GMS framework: data preprocessing, noise remov‑
ing, gene selection ensemble, gene filtering with two wrapper strategies and final selection of a stable gene subset
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2.3  Stage‑III: Gene Selection Ensemble

This stage is in charge of carrying out a filtering process 
based on a set of gene selection methods (compound fil‑
ter methods) predefined in the framework. Additionally, 
the framework can add new filter methods to improve the 
results toward those with more diversity. Therefore, this 
stage is assumed as an ensemble method where each filter 
method is individually applied to the input dataset. Then, 
the individual result of each method is added to a single set 
(called Unionset) through the union operation defined for 
sets. Hence, this stage returns a gene subset holding differ‑
ent selection strategies and criteria to ensure diversity. In 
consequence with the above, the goal of building Unionset 
is to find a gene combination from this set, which can be 
representative of the dataset and maximize the accuracy of 
different classifiers used in the study of the disease repre‑
sented. This will be the task to perform by the next stages of 
the framework. Thus, the next step to develop in Stage‑IV is 
to select gene subsets from Unionset across wrapper strate‑
gies, which maximize the accuracy of each classifier given 
by the framework.

2.4  Stage‑IV: Two Wrapper Methods

This stage is in charge of finding a small gene subset from 
Unionset for each classifier used. Genes in each subset must 
maximize the accuracy of each classifier separately. To find 
such gene subsets, two greedy strategies acting as wrapper 
methods have been implemented. We have implemented a 
gene removing strategy (known as backward gene selection), 
which we call WM1, and gene addition strategy (known as 
forward gene selection), which we call WM2. Both strategies 
are run for all existing classifiers to maximize their accura‑
cies and obtain the corresponding gene subsets.

Note that this stage has a list of classifiers to be used by 
the wrapper methods. So the idea pursued with this stage is 
to find a gene subset from Unionset for each wrapper (WM1 
and WM2) and each classifier in the list. Each subset must 
maximize the accuracy of its corresponding classifier. This 
way, we can create a single set by joining all subsets found 
from WM1 and WM2, which will have the best genes for 
each classifier. The operation mode developed by both strate‑
gies (WM1 and WM2) is presented as follows:

– Backward selection, WM1: This method starts from 
both, a gene subset (in this case, Unionset) and a clas‑
sifier as input. Then, the method iteratively removes a 
gene from Unionset and evaluates the accuracy of the 
remaining genes in Unionset by using the input classi‑
fier. If the accuracy for the new subset is greater than 
the previous subset, then the new subset replaces the 
previous Unionset. Otherwise, the gene removed from 

Unionset is returned (because it is a significant gene) 
and another gene is selected to be removed from Union‑
set. The processes above are repeated until all genes in 
Unionset have been selected to be removed. At the end 
of the algorithm, only a subset of genes meaningful 
to the classifier used will maximize the precession of 
the classifier. Note that in our case, WM1 will be run 
for each classifier existing in the classifier list of the 
framework. Thus, a different gene subset from Unionset 
will be obtained for each classifier.

– Forward selection, WM2: As in WM1, WM2 starts 
from a gene subset (in this case, Unionset) and a clas‑
sifier as its input. Unlike WM1, this strategy selects 
a gene from Unionset to be added to a set NS in each 
iteration. NS is an empty set in the first iteration of the 
algorithm. The gene added to NS in each iteration must 
be such that together with the rest of genes in NS, it 
maximizes the accuracy of the input classifier. That is, 
the NS accuracy along with the new gene added from 
Unionset must be greater than the NS accuracy without 
that gene. Otherwise, the selected gene is not added to 
NS and another gene should be selected from Unionset. 
The algorithm ends when no new gene can be added 
to NS in such a way that its accuracy improves. At this 
point, NS will have a gene subset from Unionset whose 
genes will be the most significant according the input 
classifier. Also note that for each classifier outlined in 
the framework, an NS subset is achieved, whose gene 
selection from all subsets will be solved in the next 
stage.

2.5  Stage‑V: An Algorithm Looking for a Stable 
Gene Subset

Starting from the genes in the subset returned by the stage 
above are associated with the classifiers used by the wrap‑
per methods, the goal of this stage is to find a stable gene 
subset able to simultaneously maximize the accuracy of all 
given classifiers. To do this, we have developed an algo‑
rithm (Algorithm 1) that given a k, it carries out a search 
for all k gene combinations from the input gene subset to 
find one combination maximizing the accuracy of all clas‑
sifiers at the same time.

Note that for the search for a stable subset be effec‑
tive, the gene set found in the stage above should be small 
whereas k should be much smaller than the size of the 
gene set. Our framework has been defined to reduce the 
input dataset as much as possible to insure the conditions 
above are met. Thus, this stage returns k stable genes as 
the result.
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2.5.1  GeneCombine Algorithm

subset from a dataset is affected when it is evaluated in other 
dataset of the same disease but with very different features, 
which is a challenge in the literature.

3.1  Datasets of Pancreatic Ductal Adenocarcinoma

The two PDAC datasets used in this research have been 
extracted from the public repository of the National Center 
for Biotechnology Information (NCBI), http s://www.ncbi 
.nlm.nih.gov/. The PDAC#1 dataset is composed of 54,675 
gene probes evaluated under 25 tumor tissue samples plus 
7 normal tissue samples, whereas the PDAC#2 dataset is 
composed of 54,675 gene probes evaluated under 39‑paired 
tumor and non‑tumor tissue samples. Summarizing, 
PDAC#1 has a gene expression matrix of size 54,675 × 32 
whereas PDAC#2 has one of size 54,675 × 78 . Both datasets 
are available at http s://www.ncbi .nlm.nih.gov/geo/quer y/acc.
cgi?acc=GSE3 2676  and http ://www.ncbi .nlm.nih.gov/geo/
quer y/acc.cgi?acc=GSE1 5471 , respectively.

3  Experimental Results

This current study has been developed for two Pancreas 
datasets (pancreatic ductal adenocarcinoma, PDAC), which 
we call PDAC#1 and PDAC#2. The proposed framework is 
basically applied to the first dataset (PDAC#1). After that, 
the PDAC#1 results are validated in PDAC#2 to discover 
genes significant for both datasets and, in general, genes 
relevant for the disease in question.

Therefore, the goal of this experiment is to assess our pro‑
posal in the process of discovering informative genes able 
to face the instability problem from different gene selection 
methods, classifiers and datasets. Thus, the significance of 
the genes found by our proposal from PDAC#1 in classifica‑
tion tasks is extended to the other dataset of the same disease 
(in this case, PDAC#2) to assess generality in the results. 
The latter deals with evaluating in PDAC#2, the same genes 
discovered by the EF‑GMS framework (Fig. 1) in PDAC#1. 
We are also concerned about how the accuracy of a gene 

https://www.ncbi.nlm.nih.gov/%20
https://www.ncbi.nlm.nih.gov/%20
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32676
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32676
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15471
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15471
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3.2  Results from PDAC#1

This subsection shows the results reached in each stage 
of our framework (Fig. 1) for the PDAC#1 dataset. Addi‑
tionally, Figure 2 presents a global view of the number of 
genes remaining after each filtering process. This figure 
shows the five‑staged reduction progress of the gene num‑
ber of PDAC#1 until reaching the final result in Stage‑V, 
3 informative genes. Reinforcing the information given in 
Fig. 2, Table 1 lists all stages of the framework along with 
the number of genes taken out and the reduction percentage 
(with respect to the stage above) of the remaining dataset 
after applying the filtering process in each stage. The filter‑
ing results of EF‑GMS for genes in PDAC#1 is as follows: 

– Stage‑I: Once the data processing has been applied to 
the original dataset (54,675 probes), 54,599 probes are 
extracted to a new dataset, which will be the input to the 
next stage.

– Stage‑II: This stage applies two linked filter methods to 
the input dataset (54,599 gene probes) to reduce noise. 
The first filter method applied is the Mann–Whitney 
test, which computes the p value related to each gene to 
establish a ranking and select those genes having p value 
below 0.05. In this case, the Mann–Whitney test achieved 
a new dataset composed of 8417 gene probes, which 
is passed to the second filter method, S2N. The S2N 
method computes and assigns positive or negative values 
to genes in accordance with their degrees of belonging 
to the positive or negative sample class. Thereafter, the 
genes obtaining the highest positive and negative values 
are selected as the most significant genes for each class. 
The threshold stated for both sample classes to choose 
the significant genes has been fixed in the middle point of 

the values computed from the genes in each class. Hence, 
according to the input dataset. S2N achieved a dataset 
with 613 gene probes as the result of this stage.

– Stage‑III: Once the noise in the dataset has been removed, 
this stage is responsible for running different gene selec‑
tion methods on the input dataset (613 gene probes, in 
this case) to achieve gene subsets holding different crite‑
ria. The result of each run method is added to a Unionset 
set through the union operation. Six methods have been 
used in this framework, which are: kofnGA in [29, 30], 
Boruta in [31, 32], propOverlap in [33, 34], SDA in [35, 
36], Spikeslab in [37, 38] and SubLasso in [39, 40]. For 
the case of kofnGA which is a genetic algorithm, its main 
parameters have been initialized as follows: population 
size = 100, number of generations = 50,000, the fitness 
function used has been correlation between the genes, the 
remaining parameters have been initialized as stated by 
the method. The individual results of these methods for 
PDAC#1 have been listed in Table 2. This table shows 
the name of the method applied, number of genes found 
and the mean accuracy through a stratified tenfold cross‑
validation of such genes for the three classifiers outlined 
in the framework by the next stage. The used classifiers 
are [41, 42]: SVM: linear support vector machine, which 
finds the best hyperplane separating both classes; naive‑
Bayes: this model computes the probability of each class 
given the values of all attributes and assuming the attrib‑
ute conditional independence; kNN: k‑nearest neighbor 
classification. This is a lazy model which classifies the 
input pattern by using its k‑nearest neighbors from the 
training set. Then, after carrying out the union of results, 
a new dataset with 150 gene probes was obtained and 
identified as Unionset. The mean accuracy for this last 
dataset has also been given in the table. 

Fig. 2  EF‑GMS chart summa‑
rizing the gene filtering process 
involved in each stage and the 
remaining number of genes 
when the tasks in each stage are 
applied to PDAC#1
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– Stage‑IV: This stage deals with two wrapper methods 
(WM1 and WM2) and a list of classifiers (three classifi‑
ers in this experiment: SVM, naiveBayes and kNN) to be 
used by each wrapper. The goal is to reduce the number 
of genes given by the input dataset (150 gene probes) 
while increasing the accuracy of the classifiers through 
the wrapper methods. Therefore, six gene subsets have 
been yielded, one for each combination wrapper–classi‑
fier. Both the number of genes and the accuracy reached 
for each combination above have been listed in Table 3 
(for methods WM1 and WM2). There is an accuracy 
value italicized for each row of the table, which means 
that the wrapper method of that row has been run by 
using the classifier of the column corresponding to the 
italicized value. The remaining accuracy values on the 
same row have been obtained by using the genes found 
by the classifier whose value has been italicized. Note 
that the best scores have been reached for combinations 
WM1–naiveBayes and WM2–naiveBayes. As a final step 
of this stage, a single subset with 13 genes has been cre‑
ated by union of the genes listed in Table 3, which is 
passed to the final stage. 

– Stage‑V: This stage is responsible for finding a informa‑
tive gene subset able to simultaneously maximize the 
accuracy for the three classifiers used in the framework. 

The idea is to search stable subsets with respect to dif‑
ferent classifiers to find genes regardless of the method‑
ology applied. In this case, 13 genes have been taken as 
input to this stage and we have taken k = 3 , i.e., to find 
combinations of 3 genes from the set of 13 genes. Note 
that a strategy to define the value of k is to run the search 
algorithm for k = 2 and increase this value until find‑
ing a gene combination with a mean accuracy from the 
three classifiers less than the mean accuracy of the gene 
combination previously found. We have selected k = 3 
by exploration of a parallel coordinate chart for the 13 
genes processed in this stage. Figure 3 shows the paral‑
lel coordinate chart representing tissue samples vs. gene 
expression levels of PDAC#1, where each curve repre‑
sents the profile of the corresponding gene. After that, the 
algorithm was run for k = 3 , finding a gene combination 
reaching the maximal accuracy for the three classifiers, 
as shown in the last row of Table 3 (Stage‑V algorithm). 
The three found genes are: KDM6B, LOC100507632 
and SOX4. This result proves the stability of such genes 
across different classifiers. Now, it remains to show that 
those genes are also stable when they are selected and 
evaluated from another dataset of the same disease, i.e., 
dataset PDAC#2 (Table 4).

Table 1  Comparative table of 
the number of genes taken out 
and the reduction percentage 
of the remaining dataset 
(PDAC#1) in each filtering 
stage of the framework

The reduction percentage is computed with respect to the size of the dataset achieved in the stage above

Filtering and reduction stages Number of genes taken out Reduction 
percentage 
(%)

Stage‑I 76 0.15
Stage‑II (Mann–W. test) 46,182 84.58
Stage‑II (S2N) 7804 92.73
Stage‑III 463 75.53
Stage‑IV 137 91.33
Stage‑V 10 76.92

Table 2  Comparative table 
of the gene selection methods 
applied to PDAC#1

The methods used, their number of genes found and their accuracy for tree classifiers are listed. The accu‑
racy by union of the results of these methods is also listed

Method Number of 
genes

SVM (%) naiveBayes (%) k kNN (%)

KofnGA 20 100 100 1 96.87
Boruta 41 96.87 93.75 2 96.87
propOverlap 2 90.62 90.62 3 93.75
SDA 20 100 93.75 2 96.87
Spikeslab 100 93.75 93.75 4 96.87
SubLasso 6 96.87 93.75 1 93.75
Unionset 150 100 100 3 96.87
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3.3  Evaluating in PDAC#2, the Genes Found 
in PDAC#1

An important goal of this research has been to evaluate 
the stability of the discovered genes with respect to dif‑
ferent datasets of the same disease. In this sense, we have 
assessed the variation of accuracy for the genes found in the 
PDAC#1 dataset with respect to the same genes taken from 
the PDAC#2 dataset, representing the same cancer. Hence, 
this will allow us to appreciate the generality of the results 
obtained. The result of this test has been listed in Table 4. 
As shown, the best results have been obtained by our pro‑
posal, EF‑GMS. Even though the accuracy for all methods 
has decreased because both datasets have very different fea‑
tures, the accuracy values for our proposal are above 87% , 
reaching a maximum value of 92.30% for the SVM classifier. 
This proves that the result achieved by EF‑GMS in PDAC#1 
is also significant in PDAC#2, which shows stability in the 
found genes across from different datasets of the same dis‑
ease. Reinforcing the final results given in both datasets, 

Figure 4 displays two coordinate parallel charts representing 
the profile of the three genes found for both datasets.

3.4  Biological Insight

As a biological interpretation of some of the genes found 
and to analyze their involvement in the carried out experi‑
ment, we have revised their roles, in this case for SOX4 
and KDM6B. That is, gene SOX4 (sex‑determining region 
Y‑related high‑mobility‑group box transcription factor 4) 
encodes a transcription factor that plays an important role 
during embryogenesis regulating development in different 
tissues [43]. This gene has been found to be deregulated 
in several types of cancer, in addition to being involved in 
increased cell proliferation, cell survival and apoptosis inhi‑
bition, epithelial‑to‑mesenchymal transition and metastasis. 
However, SOX4 has been reported as a tumor suppressor 
gene depending on the cellular context.

Meanwhile, the low survival imposed by PDAC is due to 
its invasiveness and the role played by desmoplasic stroma. 

Fig. 3  Parallel coordinate chart associating tissue sample with gene expression level for 13 genes significant for PDAC#1

Table 3  Comparative table 
for the number of genes and 
accuracy reached by each 
wrapper for each classifier

Method Number of 
genes

SVM (%) naiveBayes (%) k kNN (%)

2 100 96.87 1 96.87
WM1 5 96.87 100 1 100

2 96.87 93.75 1 100
1 100 78.12 3 100

WM2 3 93.75 100 3 100
1 100 78.12 3 100

Stage‑V algorithm 3 100 100 1 100
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The implication of EMT (a process that) is closely related to 
these phenomena. Considering the above, it is not surprising 
that SOX4 has been used as a PDAC biomarker in combi‑
nation with other genes and found to be closely related to 
clinical outcome in patients [44].

Gene KDM6B encodes a histone demethylase that dem‑
ethylates Lys-2 of histone H3, activating gene expression. 
Histone methylation is an epigenetic modification playing 
a critical role in expression regulation of concrete genes 
and, thus, in cancer development. This gene is downregu‑
lated under numerous cancers and considered as a tumor 

Fig. 4  Parallel coordinate charts associating tissue sample with gene expression level for the 3 genes relevant for both PDAC#1 and PDAC#2

Table 4  Comparative table 
of gene selection methods for 
PDAC#2

The genes discovered by the methods given in Table 2 for PDAC#1 have been selected from PDAC#2 and 
evaluated on the three selected classifiers. The genes selected as the final result of EF‑GMS in Table 3 have 
also been evaluated in PDAC#2

Method Number of genes SVM (%) naiveBayes (%) k kNN (%)

KofnGA 20 87.18 87.18 3 82.05
Boruta 41 88.46 84.62 4 91
propOverlap 2 69.23 71.79 5 78.20
SDA 20 84.61 82.05 1 83.33
Spikeslab 100 89.74 84.61 3 88.46
SubLasso 6 83.33 78.21 4 83.33
Unionset 150 89.74 85.90 2 89.74
EF‑GMS: stage‑V 

algorithm
3 92.30 87.18 1 91.03
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suppressor in pancreatic cancers. However, this gene has 
been suggested to induce EMT in other cancer types, such 
as the case of renal cancer [45, 46].

4  Conclusions

This paper has presented EF‑GMS, an ensemble framework 
for gene selection by considering the gene instability prob‑
lem. Thus, the overall goal of our proposal in this research 
has been to provide a methodology able to find stable genes 
across from both different classifiers and datasets of the 
same disease, which is a challenge today. To do this, we have 
provided a framework of hybrid techniques by successively 
filtering in stages significant genes until reaching a small 
gene subset stable under different conditions.

Meanwhile, the goal of the proposed study has been to 
evaluate and compare the results of our proposal with respect 
to other methods in classification tasks from one of the data‑
sets and generalize such results to the other dataset. The 
results achieved on the two datasets of pancreatic ductal ade‑
nocarcinoma (PDAC) have been very promising compared 
to other gene selection methods. Finally, the three genes 
discovered by our approach, KDM6B, LOC100507632 and 
SOX4 can be researched to gain insight into their behaviors.
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