
E. Corchado et al. (Eds.): HAIS 2009, LNAI 5572, pp. 492–499, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Solution CBR Agent-Based to Classify SOAP Message
within SOA Environments

Cristian Pinzón, Belén Pérez, Angélica González,
Ana de Luís y, and J.A. Román

University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca, Spain
{cristian_ivanp,lancho,angelica,adeluis,zjarg}@usal.es

Abstract. This paper presents the core component of a solution based on agent
technology specifically adapted for the classification of SOA messages. These
messages can carry out attacks that target the applications providing Web
Services. An advanced mechanism of classification designed in two phases in-
corporates a CBR-Agent type for classifying the incoming SOAP messages as
legal or malicious. Its main feature involves the use of decision trees, fuzzy
logic rules and neural networks for filtering attacks.

Keywords: SOAP message, XML security, multi-agent systems, case-based
reasoning.

1 Introduction

The communication among services based on Service Oriented Architecture Web
Services (SOA) is carried out by XML-based messages, called SOAP messages. This
message exchange process is one of the key elements required in SOA environments
for system integration [1]. The SOAP message payload often consists of sensitive
information, which is sent through insecure channels such as HTTP connections. If a
malicious user playing the role of a middleman intercepts a message between sender
and recipient, it can result in a series of malicious tasks carried out over the captured
message. A number of technologies and solutions have been proposed for addressing
the secure exchange of SOAP message. Some WS standards such as WS-Security [2],
WS-Policy [3], among others, continually strive to provide real security. Within aca-
demia some solutions in the research & development phase focusing on web service
security in greater detail are [1], [4], [5]. However, both the WS-Security Standards
and the given solutions still do not provide full security, leaving gaps that can be
exploited by any malicious user.

This paper presents the core component of a strong solution based on a multi-agent
architecture for tackling the security issue of the Web Service. This core is embedded
in a CBR-BDI [6] deliberative agent based on the BDI (Belief, Desire, Intention) [7]
model specifically adapted for preventing many attacks over web services. Our study
applies a solution in two phases that include novel case-based reasoning (CBR) [8]
classification mechanisms. The first phase incorporates decision tree and fuzzy logic
rules [9] while the second phase incorporates neural networks capable of making
short term predictions [10]. The idea of a CBR mechanism is to exploit the experience

 A Solution CBR Agent-Based to Classify SOAP Message within SOA Environments 493

gained from similar problems in the past and to adapt a successful solution to the
current problem. The CBR-BDI agent explained in this work uses the CBR concept to
gain autonomy and improve its problem-solving capabilities. The approach presented
in this paper is entirely new and offers a different way to confront the security prob-
lem in SOA environments.

The rest of the paper is structured as follows: section 2 presents the problem that
has prompted most of this research. Section 3 focuses on the structure of the classifier
agent which facilitates classification of SOAP message, and section 4 provides a de-
tailed explanation of the classification model integrated within the classifier agent.
Finally, section 5 presents the conclusions obtained by the research.

2 Web Service Security Problem Description

A web service is a software module designed to support interaction between hetero-
geneous groups within a network. In order to obtain interoperability between
platforms, communication between web servers is carried out via an exchange of
messages. These messages, referred to as SOAP messages, are based on standard
XML (eXtensible Markup Language) and are primarily exchanged using HTTP (Hy-
per Text Transfer Protocol) [11].

Security is one of the greatest concerns within web service implementations. At-
tacks usually occur when the SOAP message either comes from a malicious user or is
intercepted during its transmission by a malicious node that introduces different kinds
of attacks.

The following list contains descriptions of different types of attacks, compiled
from those noted in [4], [5], [12].
• Oversize Payload: When it is executed, it reduces or eliminates the availability of

a web service while the CPU, memory or bandwidth are being tied up by a mas-
sive message dispatch with a large payload.

• Coercive Parsing: Just like a message written with XML, an XML parser can
analyze a complex format and lead to a denial of service attack because the
memory and processing resources are being used up.

• Injection XML: This is based on the ability to modify the structure of an XML
document when an unfiltered user entry goes directly to the XML stream or the
message is captured and modified during its transmission.

• Parameter Tampering: A malicious user employs web service entries to manually
or automatically (dictionaries attack) execute different types of tests and produce
an unexpected response from the server.

• SOAP header attack: Some SOAP message headers are overwritten while they
are passing through different nodes before arriving at their destination. It is pos-
sible to modify certain fields with malicious code.

• Replay Attack: Sent messages are completely valid, but they are sent en masse
over a small time frame in order to overload the web service.

Standards such as WS-Security [2] and WS-Policy [3], among others, have set the
standard for solutions to security breaches. One solution proposed by [1] takes infor-
mation from the actual message structure and adds a new header named SOAP Ac-
count that contains information on the message structure. One solution based on the

494 C. Pinzón et al.

XML firewall [4] was proposed to protect web services in more detail. By applying a
syntactic analysis, a validation mechanism, and filtering policies, it is possible to
identify attacks in individual or group messages. An adaptive framework for the pre-
vention and detection of intrusions was presented in [5]. Based on a hybrid focus that
combines agents, data mining and fuzzy logic, it is supposed to filter attacks that are
either already known or new. The solution as presented is an incipient idea still being
developed and implemented. Finally, another solution proposed the use of Honeypots
[13] as a highly flexible security tool. The focus incorporates 3 components: data
extraction based on honeyd, tedpdum data analysis, and extraction from attack signa-
tures. Its main inconvenience is that it depends too much on the ability of the head of
security to define when a signature is or is not a type of attack. Even when the tech-
niques mentioned claim to prevent attacks on web services, few provide statistics on
the rates of detection, false positives, false negatives and any negative effects on ap-
plication performance.

The following sections detail the internal model of the CBR-BDI agent, as well as
the classification process for SOAP message for identifying malicious messages.

3 Classifier Agent Internal Structure

Agents are characterized by their autonomy; which gives them the ability to work
independently and in real-time environments [14]. Because of this and their other
capacities, agents are being integrated into security approaches such as IDS [15].
However, the use of agents in these systems focuses on the retrieval of information in
distributed environments, which only takes advantage of their mobility capacity.

The classification agent presented in this study interacts with other agents within
the architecture. These agents carry out tasks related to capturing messages, syntactic
analysis, administration, and user interaction. As opposed to the tasks for these
agents, the classification agent executes a classification of SOAP messages in two
phases that we will subsequently define in greater detail.

In our research, the agents are based on a BDI model in which beliefs are used as
cognitive aptitudes, desires as motivational aptitudes, and intentions as deliberative
aptitudes in the agents [7]. However, in order to focus on the problem of the SOAP
message attack, it was necessary to provide the agents with a greater capacity for
learning and adaption, as well as a greater level of autonomy than a pure BDI model
currently possesses. This is possible by providing the classifier agents with a CBR
mechanism [8], which allows them to “reason” on their own and adapt to changes in
the patterns of attacks. When working with this type of system, the key concept is that
of “case”. A case is defined as a previous experience and is composed of three ele-
ments: a description of the problem that depicts the initial problem; a solution that
describes the sequence of actions performed in order to solve the problem; and the
final state, which describes the state that has been achieved once the solution is ap-
plied. To introduce a CBR engine into a BDI agent, we represent CBR system cases
using BDI and implement a CBR cycle which consists of four steps: retrieve, reuse,
revise and retain [16].

 A Solution CBR Agent-Based to Classify SOAP Message within SOA Environments 495

Fig. 1. Classifier CBR-BDI agents in each phase of the mechanism of classification

As previously mentioned, the classifier CBR-BDI agent is the core of the multi-
agent architecture and is geared towards classifying SOAP messages for detecting
attacks on web services. Figure 1 shows the classifier CBR-BDI agents in each phase
of the mechanism of classification.

4 Mechanism for the Classification of SOAP Message Attack

The CBR-BDI classifier agent presented in section 3 incorporates a case-based rea-
soning mechanism that allows it to classify SOAP messages. The mechanism incorpo-
rated into the agent approaches the idea of classification from the perspective of
anomaly-based detection. This mechanism requires the use of a database with which it
can generate models such as the solution of a new problem based on past experience.
In the specific case of SOAP messages, it manages a case memory for each service
offered by the architecture, which permits it to handle each incoming message based
on the particular characteristics of each web service. Each new SOAP message sent to
the architecture is classified as a new case study object. The advantage that the CBR
systems provide spans from automatic learning to the ability to adapt and approach
new changes that appear in the patterns of attack.

Focusing on the problem that is of interest to us, we will represent a typical SOAP
message which consists of a type of wrapping that contains an optional heading and a
mandatory body of text with a useful message load, as depicted in figure 2.

Based on the structure of the SOAP messages and the transport protocol used, we can
obtain a series of descriptive fields to consider: IPSource, SizeMessage, Time
TravelMessage, NumberHopRouting, LengthSoapAction, NumberHeaderBlocks, Num-
berElementsBody, NestingDepthElements, NumberXMLTagRepeatedBody, Number-
LeafNodesBody. Based on this information, we can present a two-part strategy for
executing the classification process:

496 C. Pinzón et al.

Fig. 2. SOAP Message Structure

The first phase executes a case-based reasoning mechanism that incorporates the
Classification and Regression Tree (CART) knowledge extraction method to obtain
fuzzy logic rules [9]. In order to execute this CBR mechanism, it is necessary to de-
fine the case as follows:

Table 1. Case Description – CBR (First Phase)

IP Source Size Message Time Travel
Message

Number Hop
Routing

Length
SoapAction

String Int Int Int Int

In each phase of the CBR cycle, certain well-defined tasks are executed. Using

CART, we can generate decision-making rules based on the IP Source field extracted
from the transport protocol. In order to optimize the system, the reasoning cycle is
only executed when it does not have the decision-making rules obtained from previ-
ous iterations for an IP from the same class and with similar bytes. In this case, it
would only be necessary to recover the rules from the memory of rules. In the oppo-
site case, the CBR cycle is executed in its entirety, as explained below:
• Recovery Phase: Cases will be filtered according to the original IP address so that

the cases whose IP is from the same class and with a matching IP are selected.
This way, we try to account for the network that the attacks are sent from.

• Reuse: Once the IP filtering process has taken place, we extract the fuzzy logic
rules in order to classify the SOAP messages. Knowledge extraction is carried
out by applying decision trees specifically with CART, which is then applied to
the IPSource, SizeMessage, TimeTravelMessage, NumberHopRouting, Length-
SoapAction variables. The final classification that is stored would include three
groups: “Malicious”, “Legal” and “Suspicious”. For each of the decision tree
rules, we set up a final classification of the defined groups and the percentage of
erroneously classified attacks.

• Revision: Based on the set of previously established rules, we can classify the
new SOAP message in such a way that if the final group is “suspicious” or the
percentage of errors for the rules is greater than a pre-determined limit, we pro-
ceed to the classification phase. Once the classification has been achieved in this

 A Solution CBR Agent-Based to Classify SOAP Message within SOA Environments 497

first phase, or if there has been a classification error indicated by an expert, we
apply a new decision tree to obtain the rules for the knowledge obtained.

• Retain: In this phase, the decision rules derived from previous phases are stored
and associated with the new case based on the IP class and the similar bytes.

Once a solution to the first phase of classification has been obtained, we will de-
termine the need for executing the second phase of the process. This phase is carried
out in cases where the message was classified as “Suspicious” or when the percentage
of error classification exceeds the defined limit. The second phase involves a much
more complex process with an exhaustive syntactic analysis of the SOAP message
and the execution of a new CBR cycle. During the execution of the second phase,
certain control policies have been established that continuously validate the process
overload. The values of the control policies is established by defined variables such
as: TimeParsing, CPUTimeParsing, MemoryCostParsing, ValueNestingDepth

Finally, in order to complete the second phase of classification, a CBR mechanism
is carried out using a multi-layer perceptron (MLP) in the Reuse phase. This CBR
mechanism requires the memory of cases to be specifically defined for each service.
The definition of the case is detailed as follows:

Table 2. Case Description – CBR (Second Phase of the Mechanism of Classification)

NumberEle-
mentsBody

NumberHeader
Blocks

ValueNesting
Depth

NumberLeft
Nodes

TagXML
RepeatedBody

Int Int Int Int Int

The CBR mechanism executes the following tasks:

• Retrieve: If there happens to be a neural network that is trained for the web ser-
vice identified in the message, it will be retrieved to perform the classification. If
none exists, all of the stored cases corresponding to the web service will be re-
trieved.

• Reuse: If it has not already received previous training, the neural network will be
trained beginning with the retrieved cases. The initial information corresponds to
the fields described in table 2, which are transformed into values between 0 and 1
inclusive. Upon completing the training, the new message is classified as either
“Malicious” or “Legal”.
The MLP uses a Sigmoidal function with a range of possible values at the inter-
val [0,1]. It is used to detect if the request is classified as an attack or not. The
value 0 represents a legal message (non attack) and 1 a malicious message (at-
tack). The Sigmoidal activation function is the activation function most used for
classifications between two groups.

axe
xf −+

=
1

1
)((1)

The number of neurons in the output layer for the Multilayer Perceptrons is 1,
and is responsible for deciding whether or not there is an attack.

• Revise: If the estimated value does not exceed a certain threshold near zero, the
message is assumed to be valid; contrarily, it is up to an expert to validate it.

498 C. Pinzón et al.

• Retain: The results from the previous stage are stored in the event that the classi-
fication of the SOAP message has been either successful or indicated as such by
an expert. Finally, in the event that the number of cases related to the network has
increased by a percentage, a retraining of the network will be carried out.

5 Conclusions

This research has presented the nucleus of a novel solution that focuses on the protec-
tion of web services. The focus incorporates case-based reasoning methods, decision
trees, fuzzy logic rules, neural networks, and intelligent agent technology that allows
us to approach the problem of web security from a perspective based on learning,
adaptability and flexibility.

The solution was designed to be carried out in two phases. In the first phase, a
CBR mechanism incorporates decision trees; fuzzy logic rules generate a preliminary
robust solution regarding the condition of the message, without sacrificing application
performance. If the obtained solution is classified as suspicious, we then proceed to
the second phase of the process. This phase does involve a more complex process,
with a greater need for resources, and where a second CBR mechanism embeds
within a neural network to generate a final result. The proposed solution will continue
in the investigation and development for its application in various environments
where its performance can be evaluated and real results obtained.

Acknowledgments. This development has been partially supported by the Spanish
Ministry of Science project TIN2006-14630-C03-03.

References

1. Rahaman, M.A., Schaad, A., Rits, M.: Towards secure SOAP message exchange in a SOA.
In: 3rd workshop on Secure web services, pp. 77–84. ACM, New York (2006)

2. Organization for the Advancement of Structured Information Standards (OASIS): Web
Services Security: SOAP Message Security 1.1 (WS-Security (2004),
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAP
MessageSecurity.pdf

3. Bajaj, S., et al.: Web Services Policy Framework, WSPolicy (2004),
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf

4. Loh, Y., Yau, W., Wong, C., Ho, W.: Design and Implementation of an XML Firewall.
Computational Intelligence and Security 2, 1147–1150 (2006)

5. Yee, G., Shin, H., Rao, G.S.V.R.K.: An Adaptive Intrusion Detection and Prevention
(ID/IP) Framework for Web Services. In: International Conference on Convergence In-
formation Technology, pp. 528–534. IEEE Computer Society, Washington (2007)

6. Laza, R., Pavon, R., Corchado, J.M.: A Reasoning Model for CBR_BDI Agents Using an
Adaptable Fuzzy Inference System. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz,
J.-L. (eds.) CAEPIA/TTIA 2003. LNCS, vol. 3040, pp. 96–106. Springer, Heidelberg
(2004)

7. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In: KR, pp.
473–484 (1991)

 A Solution CBR Agent-Based to Classify SOAP Message within SOA Environments 499

8. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological varia-
tions, and system approaches. AI Commun. 7, 39–59 (1994)

9. Bittencourt, H., Clarke, R.: Use of classification and regression trees (CART) to classify
remotely-sensed digital images. In: Geoscience and Remote Sensing Symposium, IEEE In-
ternational, vol. 6, pp. 3751–3753 (2003)

10. Shun, J., Malki, H.: Network Intrusion Detection System Using Neural Networks. In:
Fourth International Conference on Natural Computation, vol. 5, pp. 242–246 (2008)

11. Snell, J., Tidwell, D., Kulchenko, P.: Programming Web Services with SOAP. O’Reilly,
Sebastopol (2001)

12. Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger, N.: SOA and Web Services:
New Technologies, New Standards - New Attacks. In: Fifth European Conference on Web
Services-ECOWS 2007, pp. 35–44 (2007)

13. Dagdee, N., Thakar, U.: Intrusion Attack Pattern Analysis and Signature Extraction for
Web Services Using Honeypots. In: First International Conference Emerging Trends in
Engineering and Technology, pp. 1232–1237 (2008)

14. Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M., Botti, V.: Hybrid multi-agent architec-
ture as a real-time problem-solving model. Expert Syst. Appl. 34, 2–17 (2008)

15. Abraham, A., Jain, R., Thomas, J., Han, S.Y.: D-SCIDS: distributed soft computing intru-
sion detection system. J. Netw. Comput. Appl. 30, 81–98 (2007)

16. Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: Improving Healthcare Delivery in Geriat-
ric Residences. Intelligent Systems, IEEE 23, 19–25 (2008)

	A Solution CBR Agent-Based to Classify SOAP Message within SOA Environments
	Introduction
	Web Service Security Problem Description
	Classifier Agent Internal Structure
	Mechanism for the Classification of SOAP Message Attack
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

