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Abstract Present work proposes the application of several clustering techniques
(k-means, SOM k-means, k-medoids, and agglomerative hierarchical) to analyze the
climatological conditions in different places. To do so, real-life data from data
acquisition stations in Spain are analyzed, provided by AEMET (Spanish Meteo-
rological Agency). Some of the main meteorological variables daily acquired by
these stations are studied in order to analyse the variability of the environmental
conditions in the selected places. Additionally, it is intended to characterize the
stations according to their location, which could be applied for any other station.
A comprehensive analysis of four different clustering techniques is performed,
giving interesting results for a meteorological analysis.
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1 Introduction

As they are usually perceived as similar issues, it is necessary to distinguish
between meteorology and climatology. On the one hand, meteorology consists in
the study of the atmosphere, the scientific study of phenomena and physical pro-
cesses occurring in the atmosphere, and atmospheric effects on the weather.
Meteorologists then produce forecasts that are intended to predict weather condi-
tions over the short term. On the other hand, climatology is the study of atmo-
spheric changes, that define average climates and their change over time, due to
both natural and anthropogenic climate variability. Climatology studies the same
parameters as the meteorology, but its purpose is different; not because it seeks to
make immediate forecast, but to study the long-term climatic characteristics. Cli-
matology employs a long-term perspective, analyzing models that are designed to
predict changes in weather patterns in the years to come. Present study focuses on
the study of the meteorology in four places in Spain for a certain period of time.

In Spain, a network of stations for meteorological data acquisition can be found
at [1]. These measurement stations acquire data continuously and these data are
available for further study and analysis.

Clustering can be defined as the unsupervised classification of patterns into
groups [2]. Hence, clustering (or grouping) techniques divide a given dataset into
groups of similar objects, according to several different “similarity” measures.
These sets of techniques have been previously applied to meteorological data [3, 4].

Differentiating from previous work, in present paper several clustering methods
are applied to a detailed case study, where four places with different climates are
selected with the more significant variables. Results are analyzed in two ways: the
meteorology of the four places selected and the comparison of the clustering
techniques to establish the strengths of each method. The main idea of present study
is to analyse data describing meteorology from a case study associated to four
places in Spain. Firstly, Principal Component Analysis [5] is applied to reduce the
dimensionality of analyzed data and get an intuitive visualization of their internal
structure. By doing so, we can determine an approximate number of clusters. In a
second step, clustering techniques are applied to the original data set in order to find
the best possible clustering of data. Four relevant hierarchical [6] and partitional [7]
clustering techniques are applied, combined with the most widely-used distance
measures. The number of clusters identified in the first step is applied in the second
step as some of the techniques do need that figure.

The rest of this paper is organized as follows. Section 2 presents the techniques
and methods that are applied. Section 3 details the real-life case study that is
addressed in present work, while Sect. 4 describes the experiments and results.
Finally, Sect. 5 sets out the main conclusions and future work.
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2 Clustering Techniques and Methods

This study checks the performance of several clustering techniques when analyzing
meteorological variables (described in Sect. 3), in order to study the behavior of the
climatology in different locations.

In order to analyze data sets with meteorological information, several clustering
methods [2, 8] have been applied. Clustering is one of the most important unsu-
pervised learning problems [9]. It can be defined as the process of organizing
objects into groups whose members are similar in some way. A cluster is a col-
lection of objects which are similar to those in the cluster and are dissimilar to those
belonging to other clusters. Clustering techniques can be divided, in general terms,
into two categories: partitional and agglomerative. Partitional clustering algorithms
divide the data set into a specified number of clusters trying to minimize certain
criteria [10]. On the contrary, agglomerative clustering algorithms begin with each
pattern in a distinct (singleton) cluster, and successively merges clusters together
until a stopping criterion is satisfied [2].

Those methods and measure distances are described in this section.

2.1 Partitional Clustering

2.1.1 k-Means

The well-known k-means [11] is an algorithm for grouping data into a given
number of clusters. Its application requires two input parameters: the number of
clusters (k) and their initial centroids, which can be chosen by the user or obtained
through some pre-processing. Each data element is assigned to the nearest group
centroid, thereby obtaining the initial composition of the groups. Once these groups
are obtained, the centroids are recalculated and a further reallocation is made. The
process is repeated until the centroids do not change. Given the heavy reliance of
this method on initial parameters, a good measure of the goodness of the grouping
is simply the sum of the proximity Error Sums of Squares (SSE) that it attempts to
minimize:

SSE= ∑
k

j=1
∑

x∈Gj

pðxi, cjÞ
n

ð1Þ

where p is the proximity function, k is the number of the groups, cj are the centroids
and n the number of rows. In the case of Euclidean distance, the expression is
equivalent to the global mean square error.
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2.1.2 SOM k-Means

Traditional Self Organizing Maps (SOM) [12] cannot provide with precise clus-
tering results, while traditional k-means depends on the initial value and it is dif-
ficult to find the centroid of cluster [13].

To overcome the limitations of both methods, SOM k-means [12] is proposed. It
combines SOM and k-means in the following way: when the SOM training finishes,
the k-means algorithm is applied to refine the weights obtained by the SOM. When
the SOM clustering finishes, k-means is also applied to refine the final result of
clustering.

2.1.3 k-Medoids

The objective function of k-medoids (partitioning around medoids) algorithm is to
partition a given dataset (X) into c clusters. The input and output arguments are the
ones that k-means uses [11]. The main difference between the two methods consists
in the way cluster centers are calculated; in k-medoids, the new cluster center is the
nearest data point to the mean of the cluster points [14]. The algorithm generates
random cluster centres, and not a partition matrix for initialization.

2.2 Agglomerative Hierarchical Clustering

Algorithms in this category generate a cluster tree also called dendrogram by using
heuristic techniques. The most popular algorithms that use merging to generate the
cluster tree are called agglomerative. There are many implementations of
agglomerative hierarchical algorithms [15].

2.3 Measure Distances

The above mentioned clustering techniques, take into account distance in order to
cluster the data. Different distance criteria are defined. The distance measures
applied in present study are described in this subsection.

2.3.1 Euclidean Distance

This is the most common metric, where each centroid is the mean of the points in
that cluster:
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d x− cð Þ= x− cð Þ x− cð Þ0 ð1Þ

where d is the distance from the point x to the centroid c.

2.3.2 Seuclidean Distance

In Standardized Euclidean metric (Seuclidean), each coordinate difference between
rows in X is scaled by dividing it by the corresponding element of the standard
deviation:

d x− cð Þ= x− cð ÞV − 1 x− cð Þ0 ð2Þ

where V is the n-by-n diagonal matrix.

2.3.3 Cityblock Distance

In this case, each centroid is the component-wise median of the points in that
cluster.

d x− cð Þ=1− ∑
p

j=1
xj − cj
�� ��0 ð3Þ

where the exponent P is a scalar positive value and j an observation in the vector X.

2.3.4 Cosine Distance

This is defined as one minus the cosine of the included angle between points
(treated as vectors). Each centroid is the mean of the points in that cluster, after
normalizing those points to unit Euclidean length:

d x− cð Þ=1−
xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xx′ð Þ cc′ð Þp ′ ð4Þ

2.3.5 Correlation Distance

In this case, each centroid is the component-wise mean of the points in that cluster,
after centering and normalizing those points to zero mean and unit standard
deviation.
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d x− cð Þ=1−
x− x ̄ð Þ c− c ̄ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x− x ̄ð Þ c− c ̄ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c− c ̄ð Þ c− c ̄ð Þp ð5Þ

2.3.6 Minkowski Metric

The Minkowski distance is a metric in a normed vector space which can be con-
sidered as a generalization of both the Euclidean distance and the Manhattan dis-
tance, as defined by:

d x− cð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
xsj − xtj
�� ��pp

s
ð6Þ

where p is a scalar positive value of the exponent, s and t are the indexes of the rows
of the vector x and j is index of the column of the same vector x.

3 Real-Life Case Study

This study is focused on the analysis of meteorological data recorded in four
different places in Spain, which is a country with a noticeable climatic diversity. As
it was described in Sect. 1, the data were provided by the Spanish Meteorological
Agency (AEMET) [1, 16]. From the database of AEMET, the following four
stations were selected for present analysis, based on their very different meteorol-
ogy and sparse geographical location:

1. Burgos Airport. Geographical coordinates: 42°21’22”N; 03°37’17”W; 891
meters above sea level, moderate Continental climate. Labelled as BU.

2. Santiago de Compostela Airport. Geographical coordinates: 42°53’51”N;
08°24’38’W; 370 meters above sea level, Atlantic climate. Labelled as SA.

3. Almería Airport. Geographical coordinates: 36°50’47”N; 02°21’25”W; 21
meters above sea level, Mediterranean dry climate. Labelled as AL.

4. Palma de Mallorca Port. Geographical coordinates: 39°33’12”N; 02°37’31”E;
3 meters above sea level, typical Mediterranean climate. Labelled as PM.

From the timeline point of view, data are selected from years 2004 and 2005.
Year 2003 was characterized by extreme values, particularly a heat wave during the
month of August, in three of the analyzed locations. During years 2004 and 2005
normal values were again recorded for the analyzed variables. This fact, together
with the intention of analyzing subsequent years on these studies, are the reasons
for selecting years 2004 and 2005 in present study There are a total of 2,924
samples as data are collected on a daily basis (365 days for 2004 and 2005), that is
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730 samples for each one of the 4 stations and one sample per day (daily average).
The following parameters (six meteorological variables) are gathered:

1. Maximum absolute temperature: maximum temperature in the whole day (C°).
2. Minimum absolute temperature: minimum temperature in the whole day (C°).
3. Wind speed: air maximum gust recorded in the whole day (m/s).
4. Number of hours of sunshine in the day (hours).
5. Maximum absolute atmospheric pressure in tenths of hectopascal in the whole

day (hPa).
6. Minimum absolute atmospheric pressure in tenths of hectopascal in the whole

day (hPa).

4 Experiments and Results

As previously stated, Principal Component Analysis (PCA) [17] has been firstly
applied to the dataset. In this step, the inner structure of the dataset is searched. In
this case study, three main clusters of data are identified. This figure is used as an
approximation to the number of clusters to be selected in the subsequent experi-
ments. Once the initial approximate number of clusters is obtained, several clus-
tering techniques are compared, namely: k-means, SOM k-means, k-medoids, and
agglomerative hierarchical. For present study, the Matlab [18] implementations of
such methods have been applied.

The results obtained by those techniques (after twenty valid runs for k-means,
k-medoids and agglomerative hierarchical methods and ten valid runs for SOM
k-means) are listed and described in this section: Tables 1, 2, 3 and 4 shows the
parameter values of the applied technique and the allocation of data (according to
the meteorological station they come from: BU, AL, SA, and PM) to the defined
clusters (K). Additionally, execution time is also gathered to compare the different
methods.

In Table 1, column k represents the number of clusters specified for the algo-
rithm in advance, Distance is the measure distance applied (see Sect. 2), Time is the
execution time (in seconds) and the Cluster Samples Allocation represents the
percentage of samples from each one of the stations (BU, AL, SA and PA) that are
allocated to each one the clusters; e.g. [100 0] represents 100 % of samples allo-
cated to the first cluster and 0 % allocated to the second one.

From the data in Table 1, two main aspects can be highlighted. Firstly, the big
difference between the meteorology of Burgos and the one of the other three
locations, as well as the similar Mediterranean conditions in Almería and Palma de
Mallorca. This can be seen in the following tendency; as the number of clusters is
increased, the samples belonging to Burgos tend to remain together (in the same
cluster), while the subdivision of samples in different clusters is more usual for the
locations Almería and Palma de Mallorca. It is important to highlight that in all
cases, samples from Mallorca and Almería are included in the same clusters. It is

A Comparison of Clustering Techniques for Meteorological Analysis 123



T
ab

le
1

K
-m

ea
ns

cl
us
te
ri
ng

re
su
lts

C
lu
st
er

sa
m
pl
es

al
lo
ca
tio

n
(%

)
k

D
is
ta
nc
e

T
im

e
(s
)

B
U

A
L

SA
PM

2
Se
uc
lid

ea
n

0.
05

16
01

[0
10

0]
[1
00

0]
[9
8
2]

[1
00

0]
2

C
ity

bl
oc
k

0.
04

51
75

[1
00

0]
[0

10
0]

[9
91

]
[0

10
0]

2
C
os
in
e

0.
04

59
13

[6
3
37

]
[4
0
60

]
[6
7
33

]
[4
4
56

]
2

C
or
re
la
tio

n
0.
63

11
90

[2
9
71

]
[6
9
31

]
[4
1
59

]
[7
5
25

]
3

Se
uc
lid

ea
n

0.
03

97
46

[1
00

0
0]

[0
10

0
0]

[0
0
10

0]
[0

10
0
0]

3
C
ity

bl
oc
k

0.
07

15
59

[1
00

0
0]

[0
10

0
0]

[0
0
10

0]
[0

99
1]

3
C
os
in
e

0.
05

45
90

[2
8
42

30
]

[4
8
3
49

]
[5
1
29

20
]

[4
4
8
48

]
3

C
or
re
la
tio

n
0.
83

99
33

[4
7
9
44

]
[1
1
45

44
]

[2
9
19

52
]

[2
9
19

52
]

4
Se
uc
lid

ea
n

0.
05

14
18

[0
0
10

0
0]

[5
9
0
0
41

]
[0

10
0
0
0]

[5
1
0
0
49

]
4

C
ity

bl
oc
k

0.
08

02
44

[5
2
0
0
48

]
[0

10
0
0
0]

[0
0
10

0
0]

[0
10

0
0
0]

4
C
os
in
e

0.
05

81
41

[1
8
28

39
15

]
[3
4
27

2
38

]
[4
5
27

21
7]

[3
8
20

5
37

]
4

C
or
re
la
tio

n
0.
08

48
06

[3
9
5
40

15
]

[2
4
44

7
26

]
[3
1
15

18
36

]
[2
1
50

6
23

]
5

Se
uc
lid

ea
n

0.
06

05
28

[0
49

0
51

0]
[0

0
59

0
41

]
[1
00

0
0
0
0]

[0
0
51

0
49

]
5

C
ity

bl
oc
k

0.
06

34
33

[0
0
10

0
0
0]

[0
0
0
52

48
]

[3
6
64

0
0
0]

[0
0
0
45

54
]

5
C
os
in
e

0.
07

81
43

[2
2
35

37
5
1]

[2
9
7
1
29

33
]

[4
3
10

18
26

4]
[3
1
0
4
29

35
]

5
C
or
re
la
tio

n
0.
07

91
06

[3
9
27

1
14

18
]

[6
1
44

21
28

]
[1
5
14

11
33

27
]

[6
0
51

17
26

]
6

Se
uc
lid

ea
n

0.
06

96
33

[0
10

0
0
0
0
0]

[0
0
48

30
23

0]
[6
0
0
0
0
0
40

]
[0

0
46

26
28

0]
6

C
ity

bl
oc
k

0.
08

13
11

[3
1
0
6
19

27
17

]
[2

34
25

12
1
27

]
[1
0
5
21

24
14

27
]

[2
44

18
10

0
25

]
6

C
os
in
e

0.
10

48
66

[3
4
34

17
10

3
1]

[5
1
15

20
26

33
]

[1
1
14

22
28

22
3]

[0
3
9
26

29
33

]
6

C
or
re
la
tio

n
0.
08

27
90

[1
6
3
23

1
31

26
]

[1
8
33

9
35

3
1]

[2
9
19

18
8
11

14
]

[1
2
35

6
43

4
0]

124 Á. Arroyo et al.



also worth mentioning the great influence of the measure distance applied. While
‘cosine’ and ‘correlation’ usually split samples from a location in different clusters,
‘seuclidean’ and ‘cityblock’ generally keep the samples from the same location in
the same cluster. This is because ‘cosine’ and ‘correlation’ measures the difference
in the angle between two vectors and not the difference in the magnitude between
two vectors [10]. Finally, regarding the elapsed time in executing the k-means
algorithms, it could be say that ‘Correlation’ provides the lowest response when k
equals 1, 2, and 3. A similar response is obtained when applying the other measure
distance when k equals 4, 5 and 6.

In Table 2, the results obtained by SOM k-means are shown. In this table, Type
is the type of applied algorithm in the neurons initialization process (it can be
sequential or batch). Additionally Err shows the total quantization error for the data
set, according to the distance from any given data point to a cluster center weighted
by that data point’s membership grade.

One of the first conclusions that can be drawn from Table 2 is that, as expected,
the ‘seq’ algorithm is slower than the ‘batch’ one. Both are iterative algorithms, but
the batch version is much faster in Matlab since matrix operations can be utilized
efficiently [19]. In relation to the cluster sample allocation process, SOM k-means
offer similar results to k-means (Table 1) when applying ‘seuclidean’ distance; this
is because SOM k-means uses also a simple distance measure. The same patterns in
the process of cluster samples allocation are repeated respect to k-means (Table 1).

In Table 3 the results of applying k-medoids to the original data set are shown.
By applying k-medoids (Table 3), the cluster sample allocation is similar to that

obtained by k-means (Table 1) when the measure distance is ‘seuclidean’. However,
it is quite different when ‘cosine’ and ‘correlation’ distances are applied. In these
cases k-means makes a wider division of the samples into clusters. The main
drawback of k-medoids respect to k-means (Table 1), is the computational cost; as
can be seen, when the number of clusters is increased, the execution time is much
bigger in the case of k-medoids.

Table 4 shows the very different results of applying agglomerative hierarchical
clustering technique to the original dataset from those obtained in partitional
methods, (Tables 1, 2 and 3).

The main difference between agglomerative hierarchical clustering and the other
three methods is that the former allocates, with almost 100 % of accuracy, the
samples to clusters according to the location of the stations. Increasing the number
of cluster is not then useful in the case of agglomerative hierarchical clustering
because most of the additional clusters are empty (no samples are allocated to
them). Not a very reliable response is detected in the samples cluster allocation
process when k equals 3, 4, 5, and 6 and when the measure distance selected is
‘seuclidean’, the total of the samples are allocated in the same cluster. Additionally,
when k equals 3 and 6 and selected distance is ‘cityblock’, the samples of Santiago
de Compostela, Almería and Palma de Mallorca are allocated in the same cluster.
Agglomerative hierarchical clustering is able to distinguish with almost 100 %
accuracy three groups of data: Burgos, Santiago de Compostela and Almería
together with Palma de Mallorca, when (k equals 5 and 6) and for ‘euclidean’ or
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‘minkowsky’ distance. This is because ‘euclidean’ distance is a particular case of
‘mikowski’ distance. Another drawback is that this technique is highly computa-
tionally demanding, regardless of the number of selected clusters or the distance
metric applied.

5 Conclusions and Future Work

Main conclusions derived from previously explained results (see Sect. 4) can be
divided into two groups, firstly, those regarding the analysis of meteorological
conditions in the analyzed case study. Secondly, those related to the behaviour of
the different clustering techniques applied in the case study.

Talking about the meteorological conditions in the four selected places, a clear
conclusion is the big difference between the climatology in Burgos and that in the
other three places. Also, in Santiago de Compostela it is appreciated a different
climatology from the other three places, but not as pronounced as in the case of
Burgos. However, the climate in Palma de Mallorca and Almería are very similar
between them, as none of the applied methods has been able to split those samples
in different clusters.

Regarding the applied clustering techniques, it should be emphasized the dif-
ferent results offered by the hierarchical agglomerative method compared with the
partitional methods, and also the differences between the application of different
measures of distance. In many cases, the agglomerative hierarchical clustering do
not show a reliable response, not being able to allocate samples from different
places in different clusters.. K-means, SOM k-means and k-medoids attain similar
results, and the selected measure distance selected is a key factor. K-means is the
best method in terms of computational load. None of the techniques has been able
to separate the samples of the four locations in four different clusters, as it was
initially detected through PCA.

Future work will consists on expanding the time window to analyze the temporal
evolution of meteorological data. It will also include the application of probabilistic
methods and different evaluating techniques, in order to extend the comparison.
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