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Abstract— A novel bio-inspired computational high-precision 
dental milling system is proposed in this interdisciplinar 
research. The system applies several bio-inspired models, 
based on unsupervised learning, that analyse and identify the 
most relevant features of high-precision dental-milling data 
sets and their internal structures. Finally, a supervised neural 
architecture and certain identification techniques are applied, 
in order to model and to optimize the high-precision process. 
This is done by empirically testing the model using a real data 
set taken from a dynamic high-precision machining centre with 
five axes. 
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I. INTRODUCTION 

Bio-inspired computing represents a set of various 
technologies based on biological principles, characterized by 
their adaptive, reactive, and distributed properties. It 
investigates, simulates and analyzes very complex issues and 
phenomena in order to solve real-world problems. In this 
case, bio-inspired models are used in a high-precision 
medical process (dental milling process) which requires an 
interdisciplinary approach. 

The marginal adjustment of dental prostheses to the 
dental structure (i.e. tooth enamel) without invading tissue 
and other anatomical spaces is an essential aspect of 
dentistry, as the success of any dental care treatment is based 
on an adjustment of about 15-25 micrometers between the 
dental prosthesis and the contact tissue. This close fit helps 
to reduce and prevent bacteria and germs that filter into oral 
fluid that could eventually lead to further dental treatment. 

In the past, dental structures were hand moulded by 
technicians, using casting wax. This is still a valid technique, 
but the behaviour of certain variables that play an important 
role in this process is not fully under control, which can 
affect the precision of the moulding process. 

It is for this reason, among others, that artificial 
intelligent and bio-inspired models are now applied to the 
field of dental prosthestics, in order to achieve a higher 

precision dental adjustment process that is around 15-25 
micrometers.  

New dental milling machines permit the manufacture of 
individual crowns or complex bridges from data collected 
directly from a dental scanner. 

The proposed model was tested and validated using a 
three-step procedure: firstly, the dataset is analyzed using 
projection methods such as Principal Component Aanalysis 
(PCA) and Cooperative Maximum-Likelihood Hebbian 
Learning (CMLHL) [1] to extract the dataset structure and 
the key relations between its variables and to establish 
whether the data set is sufficiently informative. It means that 
the initial collected data set once is analysed, it shows a 
certain degree of clustering, which is a sign that there is no 
any problem related to any sensor when collecting the 
information. Also means that as there is a certain degree of 
clustering, there is any kind of correlation and the process is 
well defined by such data set. Then, we can apply the 
following steps of the process. Finally, a model is produced 
at the modelling stage to estimate production time errors by 
modeling techniques. 

This paper is organized as follows. Section II introduces 
the unsupervised projection techniques for analysing the 
datasets, in order to extract their relevant internal structures. 
Section III deals with classical identification techniques used 
in the system modelling. Section IV describes the case study 
and Section V describes the bio-inspired model that is 
presented to solve the case study. Section VI presents the 
experimentation and its results and finally, the conclusions 
are set out and some comments on future lines of work are 
outlined. 

II. BIO-INSPIRED COMPUTING 

Bio-inspired computing is a set of several technologies 
devoted to solve complex problems using computational 
methods modeled on design principles drawn from the 
natural world [2]. It investigates, simulates, and analyzes 
very complex issues and phenomena in order to solve real-
world problems [3]. There are many algorithms [4][5] 
reported in the literature for artificial neural networks 
[7][12][18], which constitute one area under the umbrella of 



bio-inspired computing that has been successfully applied to 
feature selection. 

A. Data structure analysis using connectionist techniques 

1) Unsupervised models. 
The Negative Feedback Network [13] is defined as 

follows. Consider an N-dimensional input vector, ( x ), and a 
M-dimensional output vector, ( y ), with 

ijW  being the weight 

linking input j  to output i  and let   be the learning rate. 
The initial situation is that there is no activation at all in 

the network. The input data is feedforward via the weights 
from the input neurons (the x-values) to the output neurons 
(the y-values) where a linear summation is performed to get 
the output neuron activation value. We can express this as: 
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The activation is fed back through the same weights and 
subtracted from the inputs (where the inhibition takes place): 
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After that, simple Hebbian learning is performed between 
input and outputs: 

ijij yeW 
 

The effect of the negative feedback is the network 
learning stability. This network is capable of finding the 
principal components of the input data [13] in a manner that 
is equivalent to Oja’s Subspace algorithm [14], and so the 
weights will not find the current Principal Components but a 
basis of the Subspace spanned by these components. 

Maximum Likelihood Hebbian Learning 
[11][12][15][17] is based on the previous PCA-type rule and 
can be described as a family of learning rules based on the 
following equations: a Feedforward step (1) followed by a 
Feedback step (2) and then a weight change, which is as 
follows: 

  1||..  p
jjiij eesignyW 

 
It is expected that for leptokurtotic residuals (more 

kurtotic than a Gaussian distribution), values of p<2 would 
be appropriate, while for platykurtotic residuals (less kurtotic 
than a Gaussian), values of p>2 would be appropriate. 

By maximising the likelihood of the residual with respect 
to the current distribution (tuning p parameter), the learning 
rule is matched to the probability density function of the 
residual. Maximum Likelihood Hebbian Learning (MLHL) 
[11][12][15][17] has been linked to the standard statistical 
method of Exploratory Projection Pursuit (EPP) [16][11]. 

2) Cooperative Exploratory Projection Pursuit 
Cooperative Maximum-Likelihood Hebbian Learning 

(CMLHL) [1] is based on the standard Maximum Likelihood 
Network [11][12][15][17] but has a lateral connection 
(which acts after the feedforward but before the feedback) 
derived from the Rectified Gaussian Distribution [17][1][18] 
and using cooperative distribution. The final architecture is 
described as follows. There is a Feedforward step (1), then 
there is a lateral activation passing: 

     Ayb(t)yty ii 1  
A Feedback step (2) and finally a weight updating (4) 

takes place. Where: 
The parameter τ represents the strength of the lateral 

connections. The cooperative distribution in the case of N 
variables is defined by: 
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Where ij  is the Kronecker delta and i and j represent 

the identifiers of the output neuron. Finally,   is necessary 
to ensure that the y-values remain within the positive 
quadrant. 

B. Feature selection and extraction 

Feature Selection and extraction [7][8] entails feature 
construction, space dimensionality reduction, sparse 
representations and feature selection among others. They are 
all commonly used pre-processing tools in machine learning 
tasks, which include pattern recognition. Although 
researchers have grappled with such problems for many 
years, renewed interest has recently surfaced in feature 
extraction. 

The feature selection approach in this study is based on 
the dimension reduction issue. Initially, some projection 
methods such as PCA [9][10], MLHL [11][12] and CMLHL 
[1] are applied. In a first step they aim to analyse the internal 
structure of a representative data set of a case of study. If 
after applying these models a clear internal structure can be 
identified, it means that the recorded data is sufficiently 
informative -the system has been excited in their operating 
ranges and it can be modeled successfully-. Otherwise, data 
must be properly collected. 

III. SYSTEM IDENTIFICATION 

System identification (SI) aims to obtain mathematical 
models to estimate one or more behaviours from a physical 
process the dynamic equations of which are unknown. 
Classic SI refers to the parametrical literature, which has its 
origin in the linear system analysis [19]. Nevertheless, 
increased computational capability and the availability of 
bio-inspired techniques have widened research into SI. 
Artificial Neural Networks (ANNs) are one of the most 
interesting bio-inspired paradigms used in SI. In some ways, 
the SI procedure invariantly takes advantage of the 
modelling technique in use. 

The SI procedure comprises several steps [20][21]: the 
selection of the models and their structure, the learning 
methods [22][23], the identification and optimization criteria 
and the validation method. Validation ensures that the 
selected model meets the necessary conditions for estimation 
and prediction. Typically, validation is carried out using 
three different methods: the residual analysis ))(ˆ,( tt   -by 
means of a correlation test between inputs, their residuals 
and their combinations-; the mean squared error (MSE) and 



the generalization error value -normalized sum of squared 
errors (NSSE)- and finally a graphical comparison between 
the desired outputs and the model outcomes through 
simulation.The remaining parts of this section describe the 
use of ANN in SI. 

A. The ANN in the identification process 

The identification criterion consists in evaluating the 
group of candidate models that best describes the dataset 
gathered for the experiment; i.e., given a certain model 

)( *M , its prediction error may be defined as in (8). The 
aim is to obtain a model that meets the following premise 
[20]: a good model is one that makes good predictions and 
which produces small errors when the observed data is 
applied. 

)|(ˆ)(),( **  tytyt   
The use of ANN in the process of identification requires 

the selection of several parameters: the number of layers, the 
number of neurons per layer and the activation functions 
[24][25]. It has been established that two feedforward layers 
using sigmoidal or hyperbolic functions in the hidden layer 
can learn any input-output relationship, nevertheless, more 
layers might learn complex relationships [26]. A feedforward 
network with two layers is shown in “Fig. 1”. 
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Figure 1.  A feedforward network with two layers, with two nodes per 
layer, and three inputs. W is the weight matrix between the hidden and 
output layer, while w is the weight matrix between the inputs and the 

hidden layer. The network has two bias nodes with value 1. 

The number of neurons per layer is also a relevant design 
parameter. It should be analyzed in order to avoid over 
fitting [27][28][29]. Each algorithm will introduce some 
restrictions in the weight matrix. The most widely used 
training algorithms are the Lenvenberg-Marquardt method 
[30], the recursive Gauss-Newton method [20], the quasi-
Newton algorithm [31] and the batch and the recursive 
versions of the back-propagation algorithm [32]. 

When using ANN, the purpose of an identification 
process is to determine the weight matrix based on the 
observations tZ , so as to obtain the relationships between 
the network nodes. The weight matrix is usually referred as 
w, W or θ. 

The supervised learning algorithm is then applied to find 
the estimator θ, so as to obtain the identification criterion. In 
this case, the minimization of the mean square error criterion 
as defined in (9) and (10) is used. The iterative minimization 
scheme is defined in (11), where f(t) represents the search 
direction and )(t  the step size. 
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IV. CASE STUDY: 

CAD/CAM in the field of dental applications may be 
structured into three steps: digitization (for instance, of a 
tooth stump in the mouth), followed by computer software 
design, specific to each system, allowing the design of the 
abutment of the prosthetic structure. 

Finally, there is a mechanized process, in which milling 
instruments work on different materials such as ceramics, 
titanium, chromo-cobalt and compound resins. Therefore, at 
present, the latest dental milling machines manufacture 
individual crowns and complex bridge structures from the 
data collected by the dental scanner. 

This study describes the way in which a bio-inspired 
system can be applied to optimize the last step of a Computer 
Aid Design/Computer Aid Manufacturing (CAD/CAM) 
system, by optimizing the time error detection for 
manufacturing metal dental pieces as shown in “Fig.2”. 

 
Figure 2.  Example of metal pieces obtained by a high precision laser milling 

The case study is described by an initial data set of 34 
samples obtained by the dental scanner in the manufacturing 
of chromo-cobalt dental pieces with a toric tool. This data set 
has 6 input variables (Number of pieces, Radius, 
Revolutions, Feed rate X, Y and Z) and 2 output variables 
(Erosion and Real time of work) as shown in “TABLE I”. 
Time errors for manufacturing are the difference between the 
estimated time by the machine itself and real time for 
production. 

A dynamic high-precision machining centre with five 
axes (“Fig.3”) was applied in this experiment. 

TABLE I.  VALUES OF EACH VARIABLE USED IN THE PROCESS. 
Variable (Units) Range of values 
Number of pieces 1 to 4 

Radius 0.4 to 1.5 
Revolutions per minute 10600 to 22000 

Feed rate X 200 to 3000 
Feed rate Y 200 to 3000 
Feed rate Z 200 to 2000 

Erosion (mm.) 0 to 0.1195 
Real time of work (s.) 48 to 1468 

Time errors for manufacturing (s.) 24 to 550 



 

Figure 3.   A dynamic high precision machining center with five axes 

V. OPTIMIZING A DENTAL MILLING PROCESS 

A time-errors detection method is proposed for 
manufacturing dental pieces by comparing the material 
properties evolution of the manufacturing process –time 
errors- in normal operation with respect to its estimated time 
behaviour. Firstly, the dental manufacturing process is 
parameterised and its dynamic performance in normal 
operation is obtained by real manufacturing of dental pieces. 
Then, the gathered data is processed using PCA and CMLHL 
to recognize data set structures in order to determine the 
ability of the data set to be modeled and to identify the most 
relevant variables. This allows a third step, knowing a priori, 
that the model to obtain, can be achieved. 

Once the model has been obtained –in the third step-, it is 
then used as a reference model to calculate the best 
conditions under normal operating conditions in a dental 
milling process for manufacturing dental pieces, so if the 
operator wants to make a dental piece, he may determine the 
best machining conditions to minimize manufacturing time 
errors compared to the estimated manufacturing time which 
is given by the machine itself. Election of the operating 
conditions was performed manually; a new step is under 
development that will automatically include this task in the 
process. 

This section deals with the description of each step once 
the data set is collected (see Section IV). In the next 
subsection, the generation of the data set is described that 
will be used in the process. Sub-Section A presents the PCA 
and CMLHL steps, while in Sub-Section B the procedure to 
obtain the time error model is detailed.  

A. Identification of the relevant features 

As detailed in Section II, PCA and CMLHL, both of 
which were applied to this real-life case study, are techniques 
for identifying the internal structure of a data set and also to 
identify the most relevant variables. Then, by means of 
projection methods we analyse whether the data set is 
sufficiently representative of a case study, and we identify 
the most relevant variables to reduce the computational cost 
in the third and last step. 

B. Modelling a normal dental milling operation 

Once the relevant variables and their transformations 
have been extracted from the production data, then a model 
to fit the normal manufacturing operation should be 
obtained. This is done to identify bias in the estimated 
production time, which, in the end, is used for time error 

detection in the manufacturing of dental pieces. The different 
model learning methods used in this study were implemented 
in Matlab© [33]. 

The experiment followed the identification procedure 
detailed in Section III: the model structures were analyzed in 
order to obtain the models that best suited the dataset. 

Moreover, several different indexes were used to validate 
the models. The indexes are well-known and widely used 
measures in system identification [20][21]: the percentage 
representation of the estimated model; the graphical 

representation for the prediction – )|(ˆ1 mty – versus the 

measured output – )(1 ty –; the loss function or error function 
(V) and the generalization error value. 

The percentage representation of the estimated model is 
calculated as the normalized mean error for the prediction 
(FIT1). The loss function or error function (V) is the numeric 
value of the mean squared error (MSE) that is computed with 
the estimation data set. Finally, the generalization error value 
is the numeric value of the normalized sum of squared errors 
(NSSE) that is computed with the validation data set 
(NSSE1) and with the test data set (NSSE2). 

VI. RESULTS 

This initial data set was  analyzed in order to select the 
features that best describe the relationships with 
manufacturing time errors [34]. 

CMLHL is a powerful technique for identifying internal 
dataset structures. It is applied to a data set, in order to select 
the features that best describe the relationships between 
variables, and determine whether the dataset is sufficiently 
informative. The axes forming the projections (Fig. 4. and 
Fig.5) are combinations of the features contained in the 
original datasets. The X and Y axes of the projections are not 
associated to a unique original feature in general. In the case 
of PCA, the model is looking for those directions with the 
biggest variance, when CMLHL is looking for those and 
index which measures how interesting is a 
dimension/direction. In this case, directions which are as less 
Gaussian as possible, (analyzing the kurtosis) [1]  [11]  . 

As may be seen in "Fig. 4", PCA "Fig. 4.a" and CMLHL 
"Fig. 4.b" both found a clear internal structure in the dataset. 
Both methods identified 'revolutions' and ‘feed rate’ as 
relevant variables. CMLHL projection gives us more 
information because it has recognized the 'number of pieces' 
as another important variable. CMLHL provides a sparser 
representation than PCA. 

An analysis of the results obtained with the CMLHL 
model, "Fig. 4.b", leads to the conclusion that CMLHL has 
identified four different clusters ordered by 'number of 
pieces'. A further conclusion is that CMLHL identified 
different clusters ordered by 'revolutions' or ‘feed rate’. It has 
identified fifteen clusters ordered by 'number of pieces' and 
'revolutions'. 

Inside each cluster there are further classifications by 
'real time of work' and the dataset can be said to have an 
interesting internal structure. 



 
Figure 4 (a). PCA projections. 

 
Figure 4 (b). CMLHL projections after 100000 iterations using a learning 

rate of 0.01, p=0.5 and =0.05. 

Figure 4.  PCA projections (Fig. 4.a) and CMLHL projection (Fig. 4.b) 

When the dataset is considered sufficiently informative, 
the step for modelling the relations between inputs and 
production time errors in the process begins, through the 
application of several conventional ANN modelling systems. 

Thus, an ANN was used to monitor time error detection 
in the manufacturing of dental pieces by using the 
preprocessed data set from the input and output 
normalization step –zero mean and unity standard deviation-, 
the reduction of the input vectors dimension –the data set 
gathered in the previus step- and the use of early stopping 
and Bayesian regularization techniques [29], a strategy to 
generalize new situations. “TABLE II” shows the features of 
the chosen ANN, training, structures, etc. and the 
characteristics and qualities for estimation and prediction, 
along with its indexes. 

The graphic representations of the prediction - )|(ˆ1 mty - 
of time error detection in the manufacturing of dental pieces 
versus the real measured - )(1 ty - is shown in “Fig. 5” and 
“Fig. 6” for a feedforward network structure. These figures 
were used to validate the models. In “Fig. 5”, the x-axis 
shows the number of total samples and the y-axis represents 

the normalized output variable range: which are the 
normalized time errors for manufacturing. In “Fig. 6”, the y-
axis represents the unnormalized output. For the early 
stopping technique, the estimation, validation and test data 
sets include 22, 6 and 6 samples, respectively. For the 
Bayesian regularization technique, the estimation data set 
includes 34 samples.  
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Figure 5 (a) Feedforward network with early stopping. 
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Figure 5 (b) Feedforward network with Bayesian regularization. 
Figure 5.  Normalized output response of the model: The current output 

(solid line) is graphically presented with prediction (dotted line). In Fig. 5.a 
is used the quasi-Newton algorithm for training, while in Fig. 5.b in 

training the Lenvenberg-Marquardt method has been used 
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Figure 6 (a). Feedforward network with early stopping. 
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Figure 6 (b) Feedforward network with Bayesian regularization 

Figure 6.  Unnormalizaed output response of the model: The current 
output (solid line) is graphically presented with prediction (dotted line). In 
Fig. 6.a is used the quasi-Newton algorithm for training, while in Fig. 6.b 

in training the Lenvenberg-Marquardt method has been used. 

From “Fig. 5”, it may be concluded that the feedforward 
networks are able to simulate and predict the behaviour of 
time errors for the manufacturing of dental pieces –as a 
consequence of the production process-. They are capable of 
modelling more than 81% of the actual measurements.  



In “TABLE II” the value of others indexes to validate the 
models obtained are shown. These models not only present a 
lower loss function (V) and error values (NSSE1 and 
NSSE2), but also a higher system representation index value 
(FIT1). The model thus obtained may not only be used to 
predict time errors for the manufacture of dental pieces, but 
also to determine the normal operating conditions of dental 
milling processes.  

VII.  CONCLUSIONS AND FUTURE WORK 

The novel dental milling process described in this paper 
is for use in the manufacture according to medical 
specifications of precisely molded dental pieces such as 
implants. 

The dental milling presents an important error rate for 
manufacturing about the 63%. This is because the difference  
between the estimated time by the machine itself and real 
time for production. The model obtained is capable of 
modelling more than 81% of the actual measurements. This 
helps to reduce the error and the variability rate of 
manufacturing processes up to 12%, compared to 63% 
initially. Acceptable error rate in planning work for dental 
milling. 

In this research, the proposed methodology –for time 
error detection in chromo-cobalt dental pieces manufactured 
with a toric tool– in a first step aims to detect the ability of 
the data set to be modeled. In this step, both PCA and 
CMLHL have been used to show that the data sets were 
sufficiently informative and can be modeled in the following 
step with a greater guarantee of success. Finally, different 
techniques -supervised neural models- were applied to obtain 
a suitable model that is able to detect the time errors in the 
manufacturing of dental pieces. 

Future lines of research include modelling erosion -errors 
in length or tooth wear-, which is a measure of the quality of 
the dental milling process. The optimization of 
manufacturing conditions from the model is also proposed, 
by using genetic algorithms -posting error values to achieve 
optimal manufacturing conditions-. Finally, an algorithm 
will be developed to automatically identify the best operating 
conditions: minor time errors for the manufacturing of dental 
pieces and minor erosion. The resulting model will moreover 
be applied to different metals used in prosthetic dentistry. 
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