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Abstract. Topology preserving mappings are great tools for data visualization 
and inspection in large datasets. This research presents a combination of several 
topology preserving mapping models with some basic classifier ensemble and 
boosting techniques in order to increase the stability conditions and, as an 
extension, the classification capabilities of the former. A study and comparison 
of the performance of some novel and classical ensemble techniques are 
presented in this paper to test their suitability, both in the fields of data 
visualization and classification when combined with topology preserving 
models such as the SOM, ViSOM or ML-SIM.  
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1   Introduction 

Several tools can be used to treat the high amounts of data that industrial and business 
operations processes. A very useful one is the unsupervised leaning, in the field of 
artificial neural networks (ANNs). For unsupervised learning only the input and the 
network’s internal dynamics are the two elements required. No external mechanism is 
used to check on the weight setting mechanism.  

This paper is based in one of the two major methods of unsupervised learning: 
competitive learning, where the output neurons of a neural network compete among 
themselves for being the one to be active. This too mirrors the reality of what happens 
in the brain in that there are finite resources for learning and so one neuron’s gain 
means another’s loss.  

The principal problem of the models based on competitive learning is, as happens 
with all ANNs, their instability. This research is focused on the comparison and study 
of some novel and classical ensemble extension versions of some competitive 
learning models based on the topology preserving concept. Therefore the extended 
models are the Self-organising Map (SOM) [1], the Visualization-induced Self-
Organizing Maps (ViSOM) [2] and the Maximum Likelihood Scale Invariant Map 
(ML-SIM) [3] in combination with some simple ensemble techniques such as the 
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Bagging [4] or the AdaBoost [5]. The aim is to verify if the performance of these 
unsupervised connectionist models can be improved by means of these ensemble 
meta-algorithms. 

2   Self-Organizing Maps 

The Self-Organizing Map (SOM) algorithm [1] is based on a type of unsupervised 
learning called competitive learning; an adaptive process in which the neurons in a 
neural network gradually become sensitive to different input categories, sets of 
samples in a specific domain of the input space [6]. Its aim is to produce a low 
dimensional representation of the training samples while preserving the topological 
properties of the input space.  

This study focuses on an interesting extension of this algorithm. It is called  
Visualization Induced SOM (ViSOM) [2] and it is proposed to directly preserve the 
local distance information on the map, along with the topology. The ViSOM 
constrains the lateral contraction forces between neurons and hence regularises the 
interneuron distances so that distances between neurons in the data space are in 
proportion to those in the input space [7].  

The difference between the SOM and the ViSOM hence lies in the update of the 
weights of the neighbours of the winner neuron as can be seen from Eqs (1) and (2).  

Update of neighbourhood neurons in SOM: 
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Update of neighbourhood neurons in ViSOM: 
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where vw  is the winning neuron, α the learning rate of the algorithm, ),,( tkvη  is the 

neighbourhood function where v represents the position of the winning neuron in the 
lattice  and k the positions of the neurons in the neighbourhood of this one, x is the 
input to the network and λ  is a “resolution” parameter, vkd  and vkΔ  are the 

distances between the neurons in the data space and in the map space respectively. 
Another example of a topographic mapping algorithm is the Maximum Likelihood 

Scale Invariant Map (ML-SIM) [3]. It is similar to the SOM but in this case training is 
based on the use of a particular Exploratory Projection Pursuit (EPP) model [9] called 
Maximum Likelihood Hebbian Learning (MLHL) Network [9] [10]. The competitive 
learning and a neighbourhood function are then used in a similar way as in the SOM. 
The distinctiveness is that in this case the winner’s activation is then fed back through 
its weights and this is subtracted from the inputs to calculate the error or residual. 
Then the MLHL algorithm is used to update the weights of all nodes in the 
neighbourhood of the winner, which can be expressed as, 

)1(,)()()( =⋅−= vvv yytwtxte  (3) 
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These three models can be adapted for classification of new samples using a semi-
supervised procedure [11]. This added feature can also serve as a measure of the 
stability of the trained network. A high accuracy in the classification rate implies that 
the neurons of the network are reacting in a more consistent way to the classes of the 
samples that are presented. As a consequence, the map should represent the data 
distribution more accurately. 

3   Unsupervised Competitive Learning Ensembles 

The ultimate goal of constructing an ensemble is to improve the performance obtained 
of a single working unit. When talking about classification it is generally accepted 
that the sets of patterns misclassified by the different classifiers would not necessarily 
overlap. This suggests that different classifier designs potentially offer 
complementary information about the patterns to be classified and could be harnessed 
to improve the performance of the selected classifier [12]. Many ensemble models 
and theories have been developed in the previous years that range from a quite simple 
technique like Bagging [4] or AdaBoost [5] to the more sophisticated ones such as 
LPBoost [13] or and many other variants. These techniques have been mainly applied 
to models designed specifically for classification, specially supervised classifiers [14]. 
In the present study the central idea is to verify the improvements that an ensemble 
technique can provide in the multi-dimensional data visualization field over an 
unsupervised learning process such as the Competitive Learning.  

3.1   Bagging and AdaBoosting 

Boosting meta-algorithms consists on training a simple classifier in several stages by 
incrementally adding new capacities to the current learned function. In the case of the 
present work the decision taken was to begin by implementing simpler boosting 
algorithm to initially study its effect on some topology preserving algorithms. 
Bagging and AdaBoost are the two boosting algorithms for ensemble training applied 
in this work.  

Bagging (or bootstrap aggregating) [4] is one of the simplest techniques for 
ensemble construction. Its aim is to improve classification and regression models in 
terms of stability and classification accuracy, also reducing variance and helping to 
avoid overfitting. It consists on training each of the classifiers composing the 
ensemble separately using a different subset of the main training dataset. This is 
accomplished by using re-sampling with replacement over the training set. The 
classification results are obtained by (weighted or majority) voting among its 
composing classifiers.  The technique provides the ensemble with a balance between 
variability and similarity.  

The idea of AdaBoost [5] is to train several different classifiers, one each stage, in 
slightly different datasets by re-sampling with replacement. The difference is that it is 
taken into accounts which of the training samples are not correctly classified by the 
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current classifier. When a sample is not well classified its probability is increased, so 
there are more chances that it will be presented to the next trained classifier as input. 
That way, the ensemble concentrates in the samples that are harder to classify, 
improving its learning capabilities. There have been proposed two slightly different 
versions of the algorithm [15]. AdaBoost.M1 is recommended for datasets with 
samples that only belong to two different classes while AdaBoost.M2 is 
recommended for dataset with more than two different classes. Although this meta-
algorithm has been previously used for supervised classification [14], a short number 
of studies [16], [17], [19] involve unsupervised one such as in the present work. 

3.2   Summarizing Some Applied Ensembles Techniques 

The models used in this work are mainly designed as visualization tools. Constructing 
classical ensembles can be considered as a good option when trying to boost their 
classification capabilities, stabilizing its learning algorithm and avoiding overfitting; 
but when dealing with its visualization feature an ensemble is not directly displayable 
[18]. Representing all the networks in a simple image can only be useful when dealing 
with only 1-dimensional maps [17] but gets messy when visualizing 2-D maps. To 
overcome this problem some “ensemble combination” algorithms have been devised 
during this work in order to obtain a unique network that somewhat represents the 
information contained in the different networks composing the ensemble. Our 
objective is that this “combination” unites good classification accuracy with truthful 
representation of data for visual inspection. This part of the work has two approaches, 
which were inspired by SOM bagging [19] in one hand and by SOM fusion [20] on 
the other. 

For all the tests involving this combination of networks the procedure is the same. 
A simple n-fold cross-validation is used in order to employ all data available for 
training and testing the model and having several executions to calculate an average 
of its performance. In each step of the cross-validation first, an ensemble of networks 
must be obtained. The way the ensemble is trained does not affect the way the 
combination is computed. In the case of this study this has been done using the 
bagging or the adaboost meta-algorithm. Then the computation of the combination is 
performed. Finally, both the ensemble and the combination generated from it are 
tested employing the test fold.  

The different options studied for combining the network of the ensemble into a 
single network, summarizing its main characteristics are described in the following 
paragraphs. The first version is an existing one while the second and third, 
‘Superposition’ and ’Superposition + Re-labelling’, are novel techniques presented 
for the first time in this study. 

Fusion: This method involves comparing the networks neuron by neuron in the input 
space [20]. This implies that all the networks in the ensemble must have the same 
size. First, it searches for the neurons that are closer in the input space (selecting only 
one neuron in each network of the ensemble), then it “fuses” them to obtain the final 
neuron in the “fused” map. This process is repeated until all the neurons have been 
fused. A more detailed description of this procedure can be found in [20]. Here the 
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labelling of the neurons of the fused network, employing again the training dataset, is 
done in order to get a clear visualization of the map.  

Superposition: In order to obtain a visual illustration (in the form of a 2-dimensional 
map) of the information the whole ensemble contains, this procedure has been 
designed during the development of this work. It consists of “superposing” the maps 
formed by the networks composing the ensemble into a final map, on a neuron by 
neuron comparison (as is done in fusion). Note that the weights of each network in the 
ensemble are initialized in a way that makes the neurons in the same position of two 
(or more) networks comparables. A description of the process could be: 

1. Selection of the neuron in the same position in all maps (1 neuron for each map). 
2. Creation of a neuron in the same position in the final map. Its inter-neuronal 

weights are the average of the inter-neuronal weights of the neurons selected in 1. 
Its frequency in recognizing a class is the addition of the frequency of the neurons 
selected in 1 for each class recognized (This is used in the classification stage). 

3. Labelling the neuron in that position according to its most frequently recognized 
class (This is used in the representation of the map). 

4. Repeating 1-3 until all the neurons have been processed. 

This way ensures that the resultant “summarized” or “superposed” map represents 
visually what the majority of the maps composing the ensemble represent in a neuron-
by-neuron basis. When using the resultant “superposed” map for classification 
purposes it returns the class represented by the neuron that is activated when the new 
sample is presented to the network. 

Superposition + Re-labelling: This method has two main phases. The first one is the 
superposition explained before. The second one consists of testing which class 
actually recognizes better each neuron after the superposition, instead of relying on 
the recognition of the neurons in the same position done previously in the individual 
testing of each of the ensemble networks. So, after the superposition phase, the same 
dataset used for training is presented to the resultant network of the superposition to 
check which class is more consistently recognized by each neuron. Usually less 
number of neurons responds to this re-labelling, giving as a result a more compact 
map. 

4   Experiment Details 

Several experiments have been performed to check the suitability of using the 
previously described boosting and combining techniques under the frame of the 
mentioned topology preserving models. The datasets selected, the very well known 
Iris dataset and Wisconsin Breast Cancer dataset, were obtained from the UCI 
repository [20]. Visualization results are displayed in Fig.1 and Fig.2. 

Fig. 1 displays maps representing the iris dataset. The circles represents “iris-
setosa”, the squares the “iris-virginica” and the triangles the “iris-versicolor”. As it 
can be seen, the dataset’s inner structure remains the same in the single map and in 
the three combinations having a clearly separable group (circles) and two non-linearly 
separable groups (triangles and squares). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Iris dataset represented by a ViSOM of 20x20 neurons. Fig 1(a) is obtained from a 
single ViSOM. Fig 1(b) is obtained from the ‘superposition’ of an ensemble of 10 maps with 
the same characteristics as Fig 1(a). Fig (c) and (d) are respectively the ‘superposition+re-
labelling’ and the ‘fusion’ of the same ensemble. 

 
(a) 

 
(b) 

Fig. 2. Wisconsin Breast Cancer dataset represented by a ViSOM of 30x30 neurons. Fig 2(a) is 
obtained from a single ViSOM. Fig 2(b) is obtained from the ‘superposition’ of an ensemble 
of 10 maps with the same characteristics as Fig 2(a). Fig 2(c) and Fig 2(d) are respectively the 
‘superposition+re-labelling’ and the ‘fusion’ of the same ensemble as Fig 2(b). 
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(c)  

(d) 

Fig. 2. (continued) 

Fig. 2 displays maps representing the Wisconsin breast cancer dataset. The circles 
represent the “benign” cases, while the squares represent the “malignant” cases. As it 
can be seen a very condensed cloud of points corresponding to the “benign” cases 
appears at the bottom of all images, while a much more sparse cloud representing the 
“malignant” cases occupies the rest of the map. 

As it can be seen, the visualization obtained by the combination methods (Fig. 1 
b,c,d, Fig.2 b,c,d) keeps the internal structure of the dataset, being able to 
reproduce that structure with minor variations. The advantage of using an 
ensemble (by bagging or boosting) is the added stability to the analysis. This 
means that when dealing with few and scattered data points disposed over the input 
space the ensemble of maps should be able to reconstruct the structure of the 
dataset by combining the same “areas” of the different maps that compose the 
ensemble. If there is an area where no neurons (or very few) were activated in one 
map, but the neurons in the same position were activated in another map (because 
those maps were trained in slightly different dataset), there will not be a blank 
space (or very scattered disposition of neurons) in the resultant combination. This 
can be easily seen in the “superposition” combination where each neuron 
represents the data that activated that same neuron in all the maps of the ensemble. 
The “superposition + re-labelling” makes possible to obtain a map with the same 
main disposition but much reduced in complexity, as fewer neurons are now 
represented. This can serve to eliminate some distortions that can appear when are 
simply superposing all the maps in the ensemble, at cost of lower definition in the 
representation. This is more obvious in the cancer dataset in Fig 2. The “fusion” 
combination obtains very similar results to this second technique, as it follows the 
same combination and then re-labelling idea. The only difference comes by the 
criteria used to combine the neurons of each map. The classification accuracy 
obtained in the experiments is shown in Tables 1 – 4.  
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Table 1. Percentage of correct recognition of samples of the Iris dataset using ensembles of 10 
networks employing a 10-fold cross validation for the tests. All ensembles were trained using 
the bagging meta-algorithm. 

Model Best Single 
Netwk. 

Ensemble 
(weighted voting) 

Superp. Superp. + 
ReLabelling 

Fusion 

SOM (5x5) 94% 97.33% 84% 94% 94.6% 
SOM (10x10) 73.3% 97.3% 80.6% 82% 83.3% 
SOM (20x20) 48.6% 90.6% 66.6% 69.3% 58% 
ViSOM (10x10) 93.3% 92.6% 61.3% 87.3% 94% 
ViSOM (20x20) 87.3% 97.3% 80.6% 89.3% 94% 
ViSOM (30x30) 75.3% 94.6% 80.6% 82.6% 85.3% 
ML-SIM (20x20) 75.3% 76% 45% 74% 76.6% 

Table 2. Percentage of correct recognition of samples of the Iris dataset using ensembles of 10 
networks employing a 10-fold cross validation for the tests. All ensembles were trained using 
the AdaBoost.M2 meta-algorithm. 

Model Best Single 
Netwk. 

Ensemble 
(weighted voting) Superp. Superp. + 

ReLabelling Fusion 

SOM (5x5) 95.3% 97.3% 77.3% 90.6% 96.0% 
SOM (10x10) 75.3% 95.3% 80.6% 83.3% 83.3% 
SOM (20x20) 58% 90% 71.3% 71.3% 61.3% 
ViSOM (10x10) 92% 94.6% 79.3% 97.3% 90.6 
ViSOM (20x20) 86.6% 94.6% 86.6% 88.6% 88.6% 
ML-SIM (20x20) 75.3% 77.3% 44% 79.3% 78.6% 

Table 3. Percentage of correct recognition of samples of the Wisconsin Breast Cancer dataset 
using ensembles of 10 networks employing a 10-fold cross validation for the tests. All 
ensembles were trained using the bagging meta-algorithm. 

Model Best Single 
Netwk. 

Ensemble  
(weighted voting) 

Superp. Superp. + 
ReLabelling 

Fusion 

SOM (5x5) 97% 97% 89.4% 96.1% 96.2% 
SOM (10x10) 93% 96% 93.4% 93.3% 94.7% 
SOM (20x20) 77.6% 96% 83.4% 90% 82.4% 
ViSOM (10x10) 94.1% 97% 96.1% 93.6% 94.4% 
ViSOM (20x20) 80.9% 95.3% 92.3% 83% 84% 
ViSOM (30x30) 77.3% 93.3% 91.7% 78.3% 79.6% 
ML-SIM (20x20) 73.9% 94.5% 70.1% 85.7% 89.2% 

Table 4. Percentage of correct recognition of samples of the Wisconsin Breast Cancer dataset 
using ensembles of 10 networks employing a 10-fold cross validation for the tests. All 
ensembles were trained using the AdaBoost.M1 meta-algorithm. 

Model Best Single 
Netwk. 

Ensemble 
 (weighted voting) Superp. Superp. + 

ReLabelling Fusion 

SOM (5x5) 96% 95.8% 93.8% 96% 96.7% 
SOM (10x10) 91.6% 96.4% 94.3% 92.8% 94.5% 
SOM (20x20) 79.6% 96.6% 94.4% 86.1% 89.3% 
ViSOM (10x10) 85.4% 96.9% 93.8% 94% 93.6% 
ViSOM (20x20) 84.9% 96.3% 95.1% 86.8% 87.7% 
ViSOM (30x30) 77.9% 95.1% 93.3% 83.8% 84.5% 
ML-SIM (20x20) 73% 95.4% 66.1% 87.2% 87.5% 
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There are several aspects worth of noting in relation with these experiments and 
the results presented from Table 1 to Table 4. The most obvious one is that the best 
model, both for visualization and for classification is the ViSOM. The second best 
model is the SOM and the last one the ML-SIM. This was expected, taking into 
account that the ViSOM was specially developed for data visualization while ML-
SIM was specially designed for working with radial-based datasets. The second 
conclusion is that the amount of neurons composing the map is directly proportional 
to the clarity and definition of the map, but inversely proportional to the classification 
accuracy of the network. 

Talking about the ensemble algorithms, it can be concluded that the visualization 
capabilities of the models are slightly enhanced when using the simple superposition 
technique, as more neurons are represented in only one map, although this can 
sometimes make the data structures in the map a little less defined. On the contrary, 
the classification side of the models is really benefited from the ensemble inclusion. 
Even when the ensemble is constructed using networks of low classification accuracy 
the ensemble is able to obtain a greater accuracy. This was expected from all the 
previous work done in ensemble and classification. The combinations of the ensemble 
networks into a unique one are far more dependant of the accuracy of the networks 
employed to create them but still they manage to get a classification accuracy that is 
most of the times equal or superior to the accuracy of the better network of the 
ensemble, specially the superposition + re-labeling. This can be taken into account 
when a unique, but more stable network is needed; both for classification and 
visualization. 

5   Conclusions and Future work 

This study presents an interesting mixture of techniques for representation of multi-
dimensional data in 2-D maps. They are based in the combination of several maps 
trained over slightly different datasets to form an ensemble of networks with self-
organizing capabilities. The training of the ensemble of networks has been tested by 
using the bagging and boosting techniques for their comparison. The purpose of this 
combination of maps is to avoid the overfitting and to improve the stability of 
previously developed models based in unsupervised and competitive learning. They 
can be especially useful when a reduced dataset is available. As an ensemble of maps 
is impossible to represent, several different combination algorithms are proposed and 
tested. They have been applied for the first time in the case of the ViSOM and 
compared with the SOM and the ML-SIM performance. A novel ensemble 
combination technique has also been presented, and tested in a very successfully way. 
As an added effect, the classification capabilities of the models are also increased. 
These techniques have been tested in two widely known real datasets. Future work 
will include far exhaustive testing of the presented combination of techniques using 
several more complex datasets, as well as adapting the present model to other novel 
boosting meta-algorithms to check if more improvements can be obtained. 
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