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Abstract. Case-based reasoning systems, in general, and instance-based reasoning
systems, in particular, are used more and more in industrial applications nowadays.
During the last few years, researchers have been working in the development of
techniques to automate the reasoning stages identified in this methodology. This
paper presents a method for automating the retrieval stage and indexation of
instance-based reasoning systems. This method is based on a modification of a
new type of topology preserving map that can be used for scale invariant classifica-
tion. The scale invariant map is an implementation of the negative feedback network
to form a topology-preserving mapping. Maximum/minimum likelihood learning is
applied in this paper to the scale invariant map and its possibilities are explored. This
method automates the organization of cases and the retrieval stage of case-based
reasoning systems. The proposed methodology groups instances with similar struc-
ture, identifying clusters automatically in a data set in an unsupervised mode. The
method has been successfully used to completely automate the reasoning process of
an oceanographic forecasting system and to improve its performance.
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1. Introduction
The scale invariant map (SIM) was first introduced (Fyfe 1996) as an implementa-
tion of the negative feedback network (Fyfe and Baddeley 1995) to form a topology-
preserving mapping. In this paper, we apply the maximum/minimum likelihood
learning (Corchado et al. 2003a) to the scale invariant map and we explore its
possibilities in the retrieval stage of instance-based reasoning systems.

Case-based reasoning (CBR) and instance-based reasoning (IBR) systems have
been successfully used in several domains such as diagnosis, prediction, control and
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planning (Watson 1997, Pal et al. 2000, Fyfe and Corchado 2001, Corchado and
Aiken 2003). However, a major problem with these systems is the difficulty in
instance retrieval and instance matching when the number of cases increases; large
instance bases are difficult to handle and require efficient indexing mechanisms and
optimized retrieval algorithms. This paper presents a method that can be used to
alleviate this problem.

For several years, we have been working on the identification of techniques to
automate the reasoning cycle of IBR systems (Fyfe and Corchado 2001, Corchado
and Aiken 2003, Corchado et al. 2003b). We have used the maximum and minimum
likelihood hebbian learning (MLHL) with the scale invariant map (SIM) and shown
that it is able to extract information not found with the standard rules (Corchado
and Fyfe 2002). MLHL has been successfully used to automate the organization of
instances and the retrieval stage of IBR systems as shown in (Corchado et al. 2003b).
This paper shows how applying maximum\minimum likelihood hebbian learning to
the scale invariant map a stronger and efficient classification and retrieval method
can be obtained. The power of the method comes from the choice of an appropriate
function. A SIM (Fyfe 1996) is a regular array of nodes arranged on a lattice, similar
to a self-organizing map (SOM) (Kohonen 1988) but training uses a method based
on the negative feedback networks.

Maximum likelihood hebbian learning (MLHL) based models were first developed
as an extension of principal component analysis (Oja 1989, Oja et al. 1992). The
MLHL-based method has been successfully used in the unsupervised investigation of
structure in data sets (Corchado et al. 2002, 2003a, McDonald et al. 2002).

This method can be used in instance-based reasoning systems, where instances are
numerical feature vectors. The ability of the maximum likelihood hebbian learning
scale invariant map (MLHL-SIM) method presented in this paper to cluster
instances and to associate new ones to clusters can be used to successfully select
cases and retrieve them.

An instance based reasoning system developed for predicting oceanographic time
series ahead of an ongoing vessel (Corchado et al. 2001), in real time, is used to illu-
strate the efficiency of the solution proposed. This paper first presents the MLHL-
SIM based method and its theoretical background. Its abilities are demonstrated on
synthetic data sets. Finally, we show how this approach has been used in a real-world
system to forecast oceanographic thermal time series in real time.

2. Maximum likelihood Hebbian learning-based method

The use of MLHL-based method has been derived from the work of Corchado et al.
(2002, 2003a) and Fyfe and Corchado (2002a, 2002b) in the field of pattern
recognition as an extension of principal component analysis (PCA) (Oja 1989, Oja
et al. 1992). We first review PCA, which has been the most frequently reported linear
operation involving unsupervised learning for data compression, and which aims to
find that orthogonal basis that maximizes the data’s variance for a given dimension-
ality of basis. Then the exploratory projection pursuit (EPP) theory is outlined. It
is shown how the MLHL-based method may be derived from PCA and it could be
viewed as a method of performing EPP. Finally we show why MLHL-SIM based
method is appropriate for this type of problem.
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2.1.  Principal component analysis (PCA)

Principal component analysis (PCA) is a standard statistical technique for com-
pressing data; it can be shown to give the best linear compression of the data in terms
of least mean square error. There are several artificial neural networks that have been
shown to perform PCA, e.g. Oja (1989) and Oja et al. (1992). A negative feedback
implementation is applied (Fyfe and Baddeley 1995).

The basic PCA network is described by equations (1) and (3). Let us have an
N-dimensional input vector at time ¢, x(f), and an M-dimensional output vector,
v, withW; being the weight linking input j to output i.  is a learning rate. Then the
activation passing and learning is described by

N
Feedforward : y; = Z Wix;, Vi (1)
=1
M
Feedback : ¢j =x;— > Wiy (2
i=1
Change weights : AW = ne;y; 3)

We can readily show that this algorithm is equivalent to Oja’s (1989) subspace
algorithm:

AWij =nejyi = ﬂ(xj - Z ijy/c)yi “)
k

and so this network not only causes convergence of the weights but causes the
weights to converge to span the subspace of the principal components of the input
data. We might then ask why we should be interested in the negative feedback
formulation rather than the formulation (4) in which the weight change directly uses
negative feedback. The answer is that the explicit formation of residuals (2) allows us
to consider probability density functions of the residuals in a way which would not
be brought to mind if we use (4). We have developed several successful extensions of
the negative feedback network (Corchado et al. 2003, 2003a).

Exploratory Projection Pursuit (EPP) is a more recent statistical method aimed at
solving the difficult problem of identifying structure in high dimensional data. It does
this by projecting the data onto a low dimensional subspace in which we search for its
structure by eye. However, not all projections will reveal the data’s structure equally
well. We therefore define an index that measures how ‘interesting’ a given projection
is, and then represent the data in terms of projections that maximize that index.

The first step in our exploratory projection pursuit is to define which indices
represent interesting directions. Now ‘interesting’ structure is usually defined with
respect to the fact that most projections of high-dimensional data onto arbitrary
lines through most multi-dimensional data give almost Gaussian distributions
(Diaconis and Freedman 1984). Therefore, if we wish to identify ‘interesting’ features
in data, we should look for those directions onto which the data-projections are as
far from the Gaussian as possible.

It was shown in Karhunen and Joutsensalo (1994) that the use of a (non-linear)
function creates an algorithm to find those values of W which maximize that
function whose derivative is f{) under the constraint that  is an orthonormal
matrix. This was applied in Fyfe and Baddeley (1995) to the above network in the
context of the network performing an exploratory projection pursuit. Thus, if we
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wish to find a direction which maximizes the kurtosis of the distribution which is
measured by s*, we will use a function f(s) ~ s° in the algorithm. If we wish to find
that direction with maximum skewness, we use a function f(s) ~ s in the algorithm.

2.2.  e-Insensitive hebbian learning
It has been shown (Xu 1993) that the non-linear PCA rule

AWy =1 (X_/f (3) =f(3) D Wi f( yk)) )
k

can be derived as an approximation to the best non-linear compression of the data.
Thus, we may start with a cost function

J(W) = ITE{(X - Wf(WTx))Z] (6)

that we minimize to get rule (5). Lai et al. (2000) used the residual in the linear
version of (6) to define a cost function of the residual

J=/i(e) =filx = Wy) (N

where f; = ||-||? is the (squared) Euclidean norm in the standard linear or non-linear
PCA rule. With this choice of f(), the cost function is minimized with respect to any
set of samples from the data set on the assumption that the residuals are chosen
independently and identically distributed from a standard Gaussian distribution
(Bishop 1995). We may show that the minimization of J is equivalent to minimizing
the negative log probability of the residual, e., if e is Gaussian. Let

1 2
== — 8
ple) = exp(—e’) ®)
then we can denote a general cost function associated with this network as

J =—logp(e) = (e)’ + K ©

where K is a constant. Therefore, performing gradient descent on J we have

aJ aJ de T

AW X —— = -2~ ~y(?2 10
W T " aeaw Y2 (10)

where we have discarded a less important term—see Karhunen and Joutsensalo
(1994) for details.

In general (Smola and Scholkopf 1998), the minimization of such a cost function
may be thought to make the probability of the residuals more dependent on the
probability density function (PDF) of the residuals. Thus if the probability density
function of the residuals is known, this knowledge could be used to determine
the optimal cost function. Fyfe and MacDonald (2001) investigated this with the
(one dimensional) function:

PO = 5 exp(—lel.) (an
where
|0 Vie| < ¢
lel. = { le] — & otherwise (12)

with € being a small scalar > 0.
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Fyfe and MacDonald (2001) described this in terms of noise in the data set.
However, we feel that it is more appropriate to state that, with this model of the PDF
of the residual, the optimal f1() function is the e-insensitive cost function:

fi(e) = el (13)
In the case of the negative feedback network, the learning rule is

o dfi(e) de

AW X ——— = (14)
ow de oW
which gives:
0 iflej] < ¢
A ij = . . . (15)
otherwise ny(sign(e))

The difference with the common Hebb learning rule is that the sign of the residual is
used instead of the value of the residual. Because this learning rule is insensitive to
the magnitude of the input vectors x, the rule is less sensitive to outliers than the
usual rule based on mean squared error. This change from viewing the difference
after feedback as simply a residual rather than an error permits us to consider a
family of cost functions, each member of which is optimal for a particular
probability density function associated with the residual.

2.3.  Applying maximum likelihood Hebbian learning

The MLHL algorithm is constructed now on the bases of the previously presented
concepts as outlined here. Now the e-insensitive learning rule is clearly only one of a
possible family of learning rules that are suggested by the family of exponential
distributions. This family was called an exponential family in Hyvérinen ez a/. (2002),
though statisticians use this term for a somewhat different family. Let the residual
after feedback have probability density function

1
ple) = EGXP(—IeI‘”). (16)
Then we can denote a general cost function associated with this network as
J = E(—logp(e)) = E(lel” + K) 17

where K is a constant independent of W and the expectation is taken over the input
data set. Therefore, performing gradient descent on J we have

AW o -2 _ O 3
W |y e oW

~FE e[’ ! sign(e))" 18
o > Elywlersign@| ) a8)

where T denotes the transpose of a vector and the operation of taking powers of the
norm of e is on an element-wise basis as it is derived from a derivative of a scalar
with respect to a vector.

Computing the mean of a function of a data set (or even the sample averages) can
be tedious, and we also wish to cater for the situation in which samples keep arriving
as we investigate the data set and so we derive an online learning algorithm. If the
conditions of stochastic approximation (Kashyap et al. 1994) are satisfied, we may
approximate this with a difference equation. The function to be approximated is
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clearly sufficiently smooth and the learning rate can be made to satisfy n; >0,
> =00, Y, M < oo and so we have the rule:

AWy = y; sign(e;)lel’™". (19)

We would expect that for leptokurtotic residuals (more kurtotic than a Gaussian
distribution), values of p <2 would be appropriate, while for platykurtotic residuals
(less kurtotic than a Gaussian), values of p>2 would be appropriate. Researchers
from the community investigating independent component analysis (Hyvirinen
2001, Hyvérinen et al. 2002) have shown that it is less important to get exactly
the correct distribution when searching for a specific source than it is to get an
approximately correct distribution i.e. all supergaussian signals can be retrieved
using a generic leptokurtotic distribution and all subgaussian signals can be retrieved
using a generic platykutotic distribution. Our experiments will tend to support this
to some extent but we often find accuracy and speed of convergence are improved
when we are accurate in our choice of p. Therefore, the network operation is:

N
Feedforward: y; = Z Wix;, Vi (20)
=1
M
Feedback: ¢ =x; — Z Wi (21)
i=1
Weight change: AW, =n y; sign(ej)lejV”l. (22)

Fyfe and MacDonald (2001) described their rule as performing a type of PCA, but
this is not strictly true since only the original (Oja) ordinary Hebbian rule actually
performs PCA. It might be more appropriate to link this family of learning rules to
principal factor analysis since PFA makes an assumption about the noise in a data
set and then removes the assumed noise from the covariance structure of the data
before performing a PCA. We are doing something similar here in that we are basing
our PCA-type rule on the assumed distribution of the residual. By maximizing the
likelihood of the residual with respect to the actual distribution, we are matching the
learning rule to the probability density function of the residual.

More importantly, we may also link the method to the standard statistical method
of exploratory projection pursuit: now the nature and quantification of the degree of
interest is in terms of how likely the residuals are under a particular model of the
probability density function of the residuals. In the results reported later, we also
sphere the data before applying the learning method to the sphered data and show
that with this method we may also find interesting structure in the data.

2.4. Sphering of the data

Because a Gaussian distribution with mean a and variance x is no more or less
interesting than a Gaussian distribution with mean b and variance y—indeed this
second order structure can obscure higher order and more interesting structure — we
remove such information from the data. This is known as ‘sphering’. That is, the raw
data is translated till its mean is zero, projected onto the principal component
directions and multiplied by the inverse of the square root of its eigenvalue to give
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data which has mean zero and is of unit variance in all directions. Therefore, for
input data X, we find the covariance matrix

Y o ={x — ()X — (x)T) = upU" (23)

where U is the eigenvector matrix, D the diagonal matrix of eigenvalues, 7' the
transpose of the matrix and the angled brackets indicate the ensemble average. New
samples, drawn from the distribution are transformed to the principal component
axes to give y where
1 n
yi= Uj(Xi — (X)), forl<i<m (24)
«/D,; /

where 7 is the dimensionality of the input space and m is the dimensionality of the
sphered data.

3. The scale invariant map architecture

A scale invariant map (SIM) (Fyfe 1996) is a regular array of nodes arranged on a
lattice, similar to a self-organizing map (SOM) (Kohonen 1988) but training uses a
method based on the negative feedback network. A neighbourhood function and
competitive learning are used in the same way as with the SOM. The input data is
fed forward via weights Wj(equation 20) from the input neurons (the x-values) to
the output neurons (y-values) where a linear summation is performed to give the
activation of the output neuron. After selection of an output winner, the winner, ¢, is
deemed to be firing (y.=1) and all other outputs are suppressed (y;) =0, Vi # c.
The winner’s activation is then fed back through its weights and this is substracted
from the inputs, and simple Hebbian learning is used to update the weights of all
nodes in the neighbourhood of the winner.

Training on a SOM relies on iteratively selecting a winner stimulated by the
inputs, and updating the weights. With the scale invariant map, the weights of the
winning node are fed back (25) as inhibition at the inputs, and simple Hebbian
learning is then used to update the weights of all nodes in the neighbourhood of
the winner.

Feedback: e=x—W,p., (y.=1) (25)

Change weights: AW; = h.ne, Vi € N, (26)
where e is the residual or error, n represents the learning rate coefficient, W, is
the weight connected to the output winner and /. represents the neighbourhood
function, which is a Gaussian function in this case.

This has the effect of updating all weight vectors in parallel to the vectorx — 7.
This is made clear by rewriting (26) as:

AW; = hyn(x — W,), Vie N, 27

If we apply now the MLHL method to the SIM to update the weights, we have the
following rule for MLHL-SIM:

Weight change:  AW; = hnsign(x—W,)|x—W P~!,  Vie N, (28)

with different values of p.
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Figure 1. The weight vectors found after 5000 iterations using a learning rate of
0.01 and 20 output neurons.

4. Experiments using an artificial data set

We now investigate the effect of competition when the scale invariant map network
is used with different values of p. Our artificial data set is a two dimensional data set
taken uniformly from the square [—1,1]*[—1,1].

Figure 1 shows the weight vectors found after 5000 iterations using a learning rate
of 0.01 and 20 output neurons. The diagrams show results for p=11, p=1, p=0.5
and p=0. Best results tend to be achieved at p=1 or 0.5. Really, we could not
describe the mappings found to be scale invariant for negative values of p. Note also
that the larger values of p brings down the magnitude of the mapping. The smaller
(especially the negative p values) tends to be unstable in that the weights grow to lie
outside the data set, which is [—1,1]*[—1,1].

To understand how the scale invariant map works, recall that it is such that a
pie-slice of data is actually won by each neuron (see figure 2).

5. Real-time oceanographic forecasting using an IBR system tool

A forecasting system capable of predicting the temperature of the water ahead of an
ongoing vessel in real time has been developed using an IBR system (Corchado et al.
2001, Corchado and Aiken 2003). An IBR system was selected for its capacity of
handling huge amounts of data, of adapting to the changes in the environment and
to provide real time forecast.
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Figure 2. The weights of a scale invariant map trained on uniformly distributed
data taken from a square. Each node captures a ‘pie-slice’ of the data.
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Figure 3. IBR system architecture.

In figure 3, shadowed words (together with the dotted arrows) represent the four
steps of a typical IBR life cycle, the arrows together with the words in italics
represent data coming in or out of the instance-base (situated in the centre of the
diagram) and the text boxes represent the result obtained by each of the four stages
of the IBR life-cycle. Solid lines show data flow and dotted lines show the order in
which the processes that take part in the life cycle are executed. A case-based
reasoning system solves new problems by adapting solutions that were used to solve
previous problems (Aamodt and Plaza 1994). The case base holds a number of cases,
each of which represents a problem together with its corresponding solution. Once a
new problem arises, a possible solution to it is obtained by retrieving similar cases
from the case base and studying their recorded solutions.
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A typical CBR system is composed of four sequential steps which are recalled
every time that a problem needs to be solved: Retrieve the most relevant case(s),
reuse the case(s) to attempt to solve the problem, revise the proposed solution if
necessary, and retain the new solution as a part of a new case. Figure 3 outlines
the basic CBR cycle. Each of the steps of the CBR life cycle requires a model or
method in order to perform its mission. The algorithms selected for the retrieval of
cases should be able to search the case base and to select from it the most similar
problems, together with their solutions, to the new problem. Cases should therefore
represent, accurately, problems and their solutions. Once one or more cases are
identified in the case base as being very similar to the new problem, they are selected
as potential candidates for the solution of this particular problem. These cases are
reused using a predefined method in order to generate a proposed solution (i.e.
normally using an adaptation technique). This solution is revised (if possible) and
finally the new case (the problem together with the obtained solution) is stored.
Cases can also be deleted if they prove to be inaccurate; they can be merged together
to create more generalized cases and they can be modified. According to Aamodt
and Plaza (1994), there are five different types of CBR systems, and although
they share similar features, each of them is more appropriate for a particular type
of problem: typical case-based reasoning, memory-based reasoning, analogy-based
reasoning, exemplar based reasoning and instance based reasoning,

Exemplar-based reasoning systems are derived from a classification of different
views of concept definition into ‘the classical view’, ‘the probabilistic view’, and ‘the
exemplar view’. In the exemplar view, a concept is defined extensionally, as the set
of its exemplars. CBR methods that address the learning of concept definitions
(a problem addressed by much of the research in machine learning), are sometimes
referred to as exemplar-based. In this approach, solving a problem is a classification
task, i.e. finding the right class for the unclassified exemplar. Instance-based
reasoning is a specialization of exemplar-based reasoning into a highly syntactic
CBR-approach. This type of CBR system focuses on problems in which there are a
large number of instances which are needed to represent the whole range of the
domain and where there is a lack of general background knowledge. The case
representation can be made with feature vectors and the phases of the CBR cycle
are normally automated as much as possible, eliminating human intervention.
Basically, this is a non-generalization approach to the concept learning problem
addressed by classical, inductive machine learning methods. The lack of general
background knowledge may be successfully substituted by a number of instances
representative of the whole problem spectrum.

In this case, data are recorded in real time by sensors in the vessels and satellite
pictures are received weekly. A knowledge acquisition module is in charge of
collecting, handling and indexing the data in the instance-base. This was initially
done by using a rule-based system, which was then improved with the help of MLHL
algorithms (see table 1). Once the real-time system is activated on an ongoing vessel,
a new instance is generated every 2 km using the temperatures recorded by the vessel
during the last 40 km. This new instance is used to retrieve m cases from a collection
of previous cases using Kernel methods (Fyfe and Corchado 2001). This method
has been improved by the use of MLHL algorithms (Corchado er al. 2003b). The
m-retrieved instances are adapted by an unsupervised Kernel method during the
reuse phase to obtain an initial (proposed) forecast (Fyfe and Corchado 2001).
Through the revision process, the proposed solution is adjusted to generate the
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Table 1. Changes in the IBR system for real time oceanographic forecasting

Operating IBR system IBR system using MLHL IBR system using
STEP (Fyfe and Corchado 2001) (Corchado et al. 2003) MLHL-SIM
Indexing Rule-based system Maximum Likelihood MLHL-SIM
Hebbian Learning algorithm
Retrieval Kernel methods Maximum Likelihood MLHL-SIM
Hebbian Learning algorithm
Reuse Unsupervised Kernel Unsupervised Kernel methods Unsupervised Kernel
methods methods
Retrain  Kernel methods Kernel methods/Maximum Kernel methods/
Likelihood Hebbian MLHL-SIM

Learning algorithm

final forecast using the confidence limits from the knowledge base (Corchado and
Lees 2001). Learning (retaining) is achieved by updating the Kernels/MLHL algor-
ithms. A complete description of this system can be obtained in Fyfe and Corchado
(2001) and Corchado et al. (2003b). This IBR system has been successfully tested and
it is presently operative in several nuclear submarines. Improving this system is the
challenge of the STEB (Simulated Tactical Environmental Bubble) project and this
section will outline the improvements that have been done to it. When a new
technique or methodology, that may improve the forecasting system is obtained, it is
tested and evaluated, then it is progressively incorporated to the vessels, normally
when the hardware is updated or when scientific missions are carried out in
submarines. The model proposed here has been tested and successfully evaluated.
It has been demonstrated that the MLHL-SIM-based method performs better
than the MLHL algorithm (Corchado et al. 2003b) and the Kernel method (Fyfe
and Corchado 2001) in the instance indexing and the retrieval process. The following
tables shows the changes that have been done in the IBR system for real time
oceanographic forecasting. Table 1 outlines the changes made to the original system.
The first column of the table indicates in which parts of the IBR system the changes
have been made, the second column indicates the method originally used (and now
eliminated), column three indicates the method used in a previous attempt to
improve the system and column four indicates which methods have been included
in the final system modification. The changes indicated in table 1 have been
introduced with the intention of developing a robust model, based on a technology
easy to implement and that can automate the process of defining the retrieval step of
the IBR system, facilitating the indexing of cases and helping in the learning and
adaptation stage. The MLHL-SIM algorithm automates these processes, clustering
the instances and facilitating the retrieval of the most similar cases to a problem case.
In this particular application, the adaptation stage is carried out by an unsupervised
kernel network, which structure need to be identified in advance, and tuned
manually. We now present the structure of an instance and indicated how the
MLHL-SIM algorithm has been used in the mentioned IBR parts.

5.1.  The instance

Each stored instance contains information relating to a specific situation and consists
of an input profile (i.e. a vector of temperature values) together with the various fields
shown in table 2. A 40 km data profile has been found to give sufficient resolution to
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Table 2. Instance structure

Instance field Explanation
Identification Unique identification: a positive integer in the range 0 to 64 000
Input profile, 1 A 40 km temperature input vector of values Ij, (where j=1,2,...,40)

Representing the structure of the water between the present position
of the vessel and its position 40 km back

Output value, F A temperature value representing the water temperature 5km ahead
of the present location

Time Time when recorded (although redundant, this information helps to
ensure fast retrieval)

Date Date when the data were recorded (included for the same reasons as
for the previous field)

Location Geographical co-ordinates of the location where the value 140
(of the input profile) was recorded

Orientation Approximate direction of the data track, represented by an integer x,
(1<x<12)

Retrieval time Time when the instance was last retrieved

Retrieval date Date when the instance was last retrieved

Retrieval location ~ Geographical co-ordinates of the location at which the instance
was last retrieved

Average error Average error over all forecasts for which the instance has been
used during the adaptation step

characterize the problem instance (Fyfe and Corchado 2001, Corchado et al. 2001).
The parametric features of the different water masses that comprise the various
oceans vary substantially, not only geographically, but also seasonally. Because of
these variations, it is therefore inappropriate to attempt to maintain an instance base
representing patterns of ocean characteristics on a global scale; such patterns, to a
large extent, are dependent on the particular water mass in which the vessel may
currently be located. Furthermore, there is no necessity to refer to instances repre-
sentative of all the possible orientations that a vessel can take in a given water mass.
Vessels normally proceed in a given predefined direction. Therefore, only instances
corresponding to the current orientation of the vessel are normally required at any
one time.

5.2. Indexing, clustering and retrieving instances with the MLHL-SIM algorithm
To explore the structure and composition of a data set we are using MLHL-SIM.
Applying equations 20, 25 and 28 to the instance-base, the MLHL-SIM algorithm
groups the instances in clusters automatically. The proposed indexing mechanism
classifies the instances automatically, clustering together those of similar structure.
This technique is a classification and visualization tool for high dimensional data on
a low dimensional display. One of the advantages of this technique is that it is an
unsupervised method so we do not need to have any information about the data
beforehand. When a new instance is presented to the IBR system, it is identified as
belonging to a particular type by applying equations 20, 25 and 28 to it. This
mechanism may be used as an universal retrieval and indexing mechanism to be
applied to any problem similar to that presented here.
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5.3. Forecasting with the IBR system

Several experiments have been carried out to illustrate the effectiveness of the IBR
system, which incorporates the MLHL-SIM algorithm. Experiments have been
carried out using data from the Atlantic Meridian Transect (AMT) Cruise 4
(Corchado et al. 2001). We show in figure 4 the errors on a data set of 500 instances
randomly taken from the AMT 2000 data set (composed of more than 150000
instances) using the Kernel based IBR system. Figure 5 shows the results obtained
with the new MLHL algorithm.

Figure 6 shows the results obtained with the new MLHL-SIM proposed modifi-
cation. The mean absolute error, when forecasting the temperature of the water
Skm ahead of an ongoing vessel, along 10000 km (form the UK to the Falkland
Islands) was 0.0205°C with the initial method (Fyfe and Corchado 2001), and of
0.0167°C using the MLHL algorithm (Corchado et al. 2003b). With the MLHL-
SIM, the average error have been reduced to 0.0136°C, which compares very favour-
ably with the initial instance based reasoning system and other previous methods

Initial IBR - Forecasting Error (°C)
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Figure 4. Average error of the working initial IBR system in 500 forecasts carried
out during AMT 2000 cruise from UK to Falkland Islands.
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Figure 5. Average error with IBR system using MLHL algorithms in the same 500
predictions as ones in figure 4.
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Figure 6. Average error with IBR system using MLHL-SIM algorithms in the
same 500 predictions as ones in figures 4 and 5.

(Corchado et al. 2001). Using the MLHL-SIM algorithm, the number of predictions
with an error higher than 0.1 has been reduced to 3.2%, while before, with the
MLHL algorithm, it was 5.6%.

The reason may be that the data selection carried out with the MLHL-SIM
algorithm facilitate the creation of more consistent models during the adaptation
stage than with the unsupervised Kernel algorithm or the MLHL algorithm. We
have compared the proposal presented in this paper with a standard classification
algorithm that may be used for the indexing and retrieval of cases such as growing
cells structures (GCS). The MLHL-SIM method outperforms the other techniques
improving the final results clustering the instances adequately for a future adapta-
tion. The average forecasting error obtained with the GCS was 0.0231°C.

For pedagogical purposes, we illustrate the method on a small sample of cases.
A total of 150 instances that characterize the oceanographic problem have been
selected from five different areas of the Atlantic ocean (five different water masses).
Figure 7 shows the classification ability of the MLHL-SIM proposed, which gives a
rather better separation of the individual water masses found in the data set. We are
using an unsupervised learning technique in the field of artificial neural networks so
generally we do not need any information about the data. Of course, the data must
have some kind of structure (correlation, redundancy, etc).

Figure 7 has been obtained because the SIM is a visualization tool for high
dimensional data on a low dimensional display. It is composed of a discrete array
of L nodes arranged on a N-dimensional lattice and it maps these nodes into
D-dimensional data space (in this case D is equal to 2). The array of nodes is
typically one or two-dimensional, with all nodes connected to the N inputs by an
N-dimensional weight vector. MLHL is a method for identifying structure in high
dimensional data. It performs a projection of the data onto a lower dimensional
subspace in which we search for its structure with the naked eye.

6. Conclusions
We have demonstrated a new technique for instance indexing and retrieval, which
could be used to construct instance based reasoning systems. The basis of the method
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Figure 7. The results of the MLHL-SIM network for p=0.5, classifying the data
identifying five different clusters in a better way than the other techniques.

is a MLHL-SIM algorithm. This method provides us with a very robust model for
indexing the data and retrieving instances without any need of information about the
structure of the data set in advance. It has been shown to give accurate results on an
exemplar-forecasting task: our results of 0.0136°C error are the best we have ever
achieved on this data set. This is very important in the identification of fronts in
these large bodies of water particularly since such fronts have an extremely adverse
effect on underwater communications. The retrieval of the best matching instance is
a very simple operation using the proposed method and presents no major compu-
tational obstacles. The whole system may be used with any number-based data set;
an area of ongoing research is the application of algorithms that combine MLHL-
SIM and kernel methods. One of the major advantages of the MLHL-SIM is its
fast convergence, so that it could be used even in real time problems. This method
is also more stable and accurate than previous implementations carried out with
Kernel methods, K-nearest neighbour algorithms, and growing cells structures. The
proposed method is advantageous in both the creation of and retrieval from instance
bases, but is also important in its own right in the unsupervised investigation of data
sets.
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