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Forecasting using twinned principal curves
and twinned self-organising maps
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Abstract

We extend the principal curves algorithm by creating twinned principal curves which extend
through two related data sets simultaneously. The criteria for accepting a pair of data points as
neighbours for any other pair of data points is that each of the relevant points must be close in
the appropriate space. We illustrate the algorithm’s predictive power on arti-cial data sets before
using it to predict on a real -nancial time series. We compare the error from this twinning with
that achieved by a related algorithm which twins self-organising maps.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper discusses the e3ect of twinning two data sets and applying algorithms
which are normally only applied to a single data set to the pair of twinned sets. We
will twin the principal curves algorithm [6] and Kohonen’s self-organising map (SOM)
[8] and use the resulting algorithms to forecast time series data: one data set is the
previous values of the time series while the second data set is the future values of the
time series. Both methods give nonlinear projections which suits the task of forecasting
on typical data sets in which there is no linear relationship between the past and the
future. Both methods can be thought of as extensions of linear techniques for relating
two data sets.

The statistical technique for estimating the linear combination of a data set which
gives the greatest correlation with a linear combination of a second data set is known
as canonical correlation analysis (CCA). Let x1 be a vector drawn from the -rst data
set and let x2 be the corresponding vector drawn from the second data set. Then CCA
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attempts to estimate w1 and w2 such that y1 = wT
1x1 and y2 = wT

2x2 have the greatest
correlation over the whole set of samples x1 and x2. We have previously developed
neural algorithms [3,9,11] for performing CCA; the neural algorithms have certain
advantages over standard statistical techniques including the ability to -nd nonlinear
projections of a data set which maximise correlations. We have also used the neural
algorithms for forecasting [10]: one data set is the previous samples of a time series,
the other is the sample(s) which one wishes to predict.

We have previously [5] developed an extension of principal curves which performs
a type of nonparametric CCA. We illustrate its use on arti-cial data and then use the
method to forecast on a -nancial data set which we have previously [4] used to test
other forecasting methods. We then develop a twinned SOM algorithm and compare
its ability to forecast with that of the twinned principal curves.

2. Twinned principal curves

Principal component analysis (PCA) is a standard statistical technique for -nding
a lower dimensional linear projection of high dimensional data which gives minimum
mean square error over all projections of this dimensionality. Principal curves [1,6,7]
is an extension of this method in which a nonlinear manifold can be used instead of
the linear subspace determined by PCA. However there is clearly a diGculty with this
in that it is always possible to -t a -nite training set with no error. There are several
de-nitions of principal curves which constrain the curves in one way or another to
overcome the problem of over-tting. In [6], every point, P, on the curve is the mean
of the points that project onto P. This is known as self-consistency. The unit-speed
curve (one whose derivative has norm 1) which satis-es this is the principal curve. In
[7], the principal curve is de-ned as the curve of a speci-c length which minimises
the mean squared distance from the data.

In this paper, we extend the principal curve method so that we now -nd a nonlinear
manifold in each of two data sets. We use a nonparametric method to determine the
two manifolds. Since we are drawing data iid from two data sets simultaneously, our
method creates manifolds which exhibit a correlation between corresponding points on
the manifolds which we can then use to subsequently forecast a sample from one data
set given a sample from the other. The algorithm in outline is

(1) Initialise di1 with the projection of xi1 onto the -rst principal component of the
-rst data set and similarly with di2; ∀i.

(2) With the current projections di1 and di2; ∀i.
(3) Select xi1 from the -rst data set and the corresponding point, xi2 from the second

data set.
(4) Find all neighbours of the point which have

• projections close to the projections of the chosen point.
• projections of their corresponding points in the other data set satisfying the

same constraint with respect to the second data set. Note that these projections
will be to di3erent curves.
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(5) Thus, if di1 is the projection of xi1 and di2 is the projection of xi2, then Si = {k :
|dk1 − di1|¡	1 and |dk2 − di2|¡	2}.

(6) Find the local average of points projecting close to xi1 and xi2. i.e. di1 (new) =
Mean of dj1; j∈ Si and di2 (new) = Mean of dj2; j∈ Si.

(7) di1 = di1 (new) and di2 = di2 (new), ∀i.
(8) Return to Step 2.

The algorithm iterates till a stopping criteria is met: either the algorithm repeats for
a set number of rounds or till the number of nodes to which the data is projected
reaches a certain number (see below) or till the mean square error reaches a particular
value. We will in the following call the nodes to which the data project the “knot
points” of the algorithm.

Clearly, there are extensions which can be made to this algorithm. For example it
is possible to change the value of the width parameters 	1 and 	2 during the course of
the iterations, though this is not implemented in the simulations discussed in this paper
for reasons which will become clear in the next section. Also, the use of a weighted
average rather than a simple average may improve the accuracy of the new projections.
Finally, the algorithm tends to draw data from the extremes of the principal curve and
so some additional local averaging may be useful in this case. Again the last two points
are not implemented in the results discussed in this paper.

3. Experiments

3.1. Arti1cial data

We -rst create 2 sets of two-dimensional arti-cial data which are known to have a
correlation from x1(t) = sin(t)+
1, y1(t) = cos(t)+
2; x2(t) = t+
3, y2(t) = (t=3)+
sin(t) + 
4, where t is drawn from a uniform distribution in [0; 2�] and 
i − N (0; 0:2)
is Gaussian noise. Examples of this data are shown in the top row of Fig. 1.

Fig. 1 also shows the thinning which takes place in data set 2 after 1, 2 and 10
iterations and in data set 1 after 10 iterations. The sparsi-cation discussed above is
clearly evident.

Now we may use these projections to predict the position of a point, x2, in data
set 2 given its corresponding point x1 in data set 1. Typically, we will approximate
the principal curves with the sum of linear projections given by joining the sparse
points as shown in the last row of Fig. 1. To forecast, we project x1 onto the current
principal curve of the -rst data set and use the corresponding point on the current
principal curve of the second data as the predictor of x2. Typical results are shown in
the last row of Fig. 1, the “∗” on the curve being the predictor while the “+” shows
the point’s actual position.

3.2. Forecasting

The problem we have modelled is a forecasting one: given the last few days’ ex-
change rates (US dollar against Japanese yen), is it possible to forecast the next day’s
exchange rate with some degree of accuracy? We have previously [4] used a variety of



40 Y. Han et al. / Neurocomputing 57 (2004) 37–47

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 -1.5  -1  -0.5 0 0.5 1 1.5
 -1.5

 1

 -0.5

0

0.5

1

1.5

 -1.5  1  -0.5 0 0.5 1 1.5
 -1

 -0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 -1.5  -1  -0.5 0 0.5 1
 -1

 -0.8

 -0.6

 -0.4

 -0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Predicted position 

Actual 
position 

 -1

 -0.8

 -0.6

 -0.4

 -0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Predicted position 
Actual
position 



Y. Han et al. / Neurocomputing 57 (2004) 37–47 41

Table 1
The -rst column gives the number of knot points and the others give the mean absolute percentage error on
a test data set predicting 1 to 5 days ahead

Knot points Day 1 Day 2 Day 3 Day 4 Day 5

57 1.0006 1.1086 1.2103 1.3035 1.4022
408 0.7413 0.9158 1.0685 1.1863 1.2887
607 0.6711 0.7939 0.9018 1.0197 1.0880

methods to -nd the underlying factors in this data set and then used a standard multi-
layered perceptron using backpropagation to predict each factor separately. To test our
multilayered perceptron, we have split the data set into two sets: 1706 samples were
used as the training data and 1706 for the test data. Each training input comprised a
particular day’s exchange rate plus the previous n days’ exchange rates where values
of n ranged from 5 to 25. With the current algorithm, we can simultaneously forecast
as many days in advance as we wish, since our second principal curve can be as high
dimensional as we wish. Typical results in terms of mean absolute percentage error on
the test set are given in Table 1.

4. Twinned self-organising maps

Now the connection between principal curves and SOM has been discussed often in
the literature, e.g. [13]. This suggests that the SOM might be used in a similar manner
to the twinned principal curves algorithm. This may be conceptually thought of as two
SOMs linked via the method of determining the winning neuron. Thus if the centres
in our -rst space (the last 10 days data for example) are given by wi and the centres
in the second space (the 5 days ahead which we wish to predict) are given by vi, then
we can select our winner using

c = arg min{‖x1 − wi‖+ ‖x2 − vi‖} (1)

and then updating our individual centres each with the standard learning rules for a
SOM.

Qwi = ��(c; i)(x1 − wi):

Qvi = ��(c; i)(x2 − vi);
where � is a learning rate and �(c; i) is the neighbourhood function which in our case
was a simple Gaussian. To test how accurate the trained model is on new data, we

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 1. The top two diagrams show samples from the data sets. The middle diagrams show the -rst and
second projections of the second data set. The third row shows the projections of both data sets after 10
iterations. The last row shows the results of forecasting the positions of points in data set 2 given only the
position of the corresponding point in data set 1.
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Table 2
Using the same data set of 3497 exchange rates, the mean absolute percentage error when using twinned
SOMs

Centres Day 1 Day 2 Day 3 Day 4 Day 5
25 (SOM) 0.6552 0.6671 0.6768 0.6908 0.6933

Table 3
The mean absolute percentage error when using the two methods to predict 88 students’ open-book exams
from their closed-book exams

SOM 0.1453 0.3055 0.3601
P Curve 0.2573 0.2494 0.1420

determine the winner only on the x1 data set

c = arg min{‖x1 − wi‖} (2)

and use

|x2 − vc| (3)

as a measure of the error of the prediction. Results on the same -nancial data set as
previously are shown in Table 2 which should be compared with Table 1. We see that
the SOM easily outperforms the twinned principal curves algorithm for this task for
an equivalent number of centres or knot points.

4.1. Predicting student’s exam marks

Our second experiment on a real data set uses data reported in [12]; it comprises
88 students’ marks on 5 module exams. The exam results can be partitioned into two
data sets: two exams were given as close book exams while the other three were
opened book exams. The exams were on the subjects of Mechanics(C), Vectors(C),
Algebra(O), Analysis(O), and Statistics(O). We thus split the -ve variables (exam
marks) into two sets—the closed-book exams (x11; x12) and the opened-book exams
(x21; x22; x23). One possible quantity of interest here is how highly a student’s ability
on closed-book exams is correlated with his ability on open-book exams. Alternatively,
one might try to use the open-book exam results to predict the closed-book results (or
vice versa). We have used the two methods above to attempt to predict the students’
open-book exams from their closed-book exams. The results (in terms of mean absolute
percentage errors) are shown in Table 3. The principal curve method has a slight
advantage over the twinned SOM method but this advantage is reversed for Exam 3. It
is very diGcult to analyse why these results take the form that they do though clearly
the results merit further study.

The twinned principal curve method used only 2 iterations through the data set while
the twinned SOM method 100 000 samples (with replacement clearly) from the 88 data
points.
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5. Discussion

The twinned principal curves algorithm is a somewhat di3erent algorithm from that
suggested by [6] or [7] in that it iteratively uses a kernel smoother rather than attempt-
ing to approximate a principal curve by a mixture of straight lines. However it has a
rather nice property of sparsi-cation of the projections: the local averaging provides a
smoothing of the data set and since we keep the values of 	1 and 	2 constant during
the course of the simulation this smoothing progressively works out from each data
point resulting in fewer and fewer projections onto the principal curve (compare the
central two rows in Fig. 1). We may use this property to allow the number of distinct
nodes we seek to determine the value of 	1 and 	2 (or vice versa).

It is worth noting also that this algorithm is able to deal with data sets which
standard principal curve algorithms -nd diGcult: the very fact of having two data sets
with which to work simultaneously alleviates several problems. For example, since
we initialise with a PCA and one of our data sets is circular, any diameter of the
circle may be a principal component direction. This unfortunately means that points
on opposite sides of the circle project onto the same part of the eigenvector and so
we often have an initial twisting of the principal curve as it moves from the centre of
mass on one side of the circle to the centre of mass on the other side, these centres
of mass being caused by the -nite numbers of samples. However, we only consider
points to be local to the current point if they are local in both projections. This makes
it much less likely that false neighbours will be chosen.

CCA maximises the correlation between two data sets under the constraint that the
variance of y1 = wT

1x1 and y2 = wT
2x2 are both 1. Twinned principal curves can still

meet this criterion; having found our sum of linear approximators, we may project new
samples onto these twinned principal curves and calculate the variance of the resultant
projections. In calculating new correlations, we may simply then divide each of y1 and
y2 by their corresponding standard deviations.

We have been asked if the algorithm can be viewed as a single principal curve
algorithm which has dimensionality equal to the sum of the dimensionality of x1 and
x2. The answer is really no in that we use the criteria of closeness in each space
independently and so simply having a single principal curve which joins together the
two points x1 and x2 would give di3erent results. It must be noted, however, that the
SOM algorithm which does precisely this appears to work rather well.

5.1. Self-intersecting curves

One of the limiting factors for principal curves is that the curves (and hence the data
set) should not intersect with itself. If this happens, the direction of maximum rate of
change will not be unique at that point and so the principal curve cannot be found
uniquely. However, when we have two data sets such intersections are permissible
provided intersections in both data sets do not occur at the same time in both data
sets.

Consider the data shown in the top line of Fig. 2, it comprises 2 sets of two-
dimensional arti-cial data from x1(t) = sin(t) + 
1; y1(t) = cos(t) + 
2; x2(t) = t + 
3,
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Fig. 2. The top two diagrams show samples from the data sets. The left diagram in the second row shows
the projections of the intersecting data set after 10 iterations of the twinned principal curves algorithm; the
right diagram shows a trained SOM’s centres.

if t ∈ [0; 2�] else x2(t) = (4� − t) + 
3; y2(t) = t=3 + sin(t) + 
4 if t ∈ [0; 2�] else
y2(t) = (4�− t)=3 + sin(4�− t) + 
4 where t is drawn from a uniform distribution in
[0; 4�] and 
i− N (0; 0:2) is Gaussian noise.

The knot points after 10 iterations of the twinned principal curves algorithm are
shown in the second line of this -gure.

We see that the method reliably -nds the principal curves of both data sets. However
it should be noted that if the -rst data point is chosen near the intersection point on the
-rst curve, the second predicted data point can be very far from the correct second data
point. The twinned SOM algorithm also is able to e3ectively model the intersecting
data set as shown in Fig. 2.

5.2. The number of knot points

In the principal curve algorithm, we have a parameter (	1 or 	2 respectively in
our algorithm) which determines the width of the smoothing window and which thus
eventually determines the number of knot points to which the algorithm converges.
This also has an e3ect on the sum of squared errors (SSE) as shown in Table 4,
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Table 4
The sum of the squared errors on a test set of arti-cial data

Iter Knots SSE Knots SSE Knots SSE

1 973 58.8 950 73.7 976 80.5
2 690 41.1 638 51.5 888 58.4
3 483 48.8 428 59.3 609 52.0
4 316 52.4 268 76.3 318 53.9
5 173 60.9 165 88.7 113 80.7
6 72 71.9 73 97.9 51 88.5
7 37 75.6 33 105.3 31 117.6

The -rst column gives the iteration number, the next two give the number of knot points and the sum of
squared errors when 	=0:5, the next two give the same information when 	=0:7 and the last two the same
information when 	 = 0:3.

Table 5
Three simulations which show the varying number of knot points and the e3ect on mean absolulte percentage
error when forecasting 1 day, 2 days ; : : : ; 5 days ahead

Knot points Day 1 Day 2 Day 3 Day 4 Day 5

57 1.001 1.109 1.210 1.314 1.402
408 0.741 0.916 1.069 1.186 1.289
607 0.671 0.794 0.902 1.020 1.088

the -rst two columns are 	 = 0:5, the second two with 	 = 0:7 and the last two with
	=0:3. In this section, we investigate criteria which may be used to decide what level
of smoothing is optimal.

We see that as the number of knot points decreases, the error initially decreases
before beginning to increase again. The later increase is due to an increase in bias
in the learning machine—the number of knot points is not suGcient to adequately
represent the data. The initial decrease is due to a decrease in variance as the noise is
removed from the machine due to the smoothing e3ect of the algorithm.

Table 5 shows the e3ect of di3ering number of knot points on the mean absolute
percentage error of forecasting 1 day, 2 days ; : : : ; 5 days ahead. We see that the low-
est error is found when using the greatest number of knot points and that the error
increases, for a given number of knot points, as we attempt to forecast further into the
future. Table 6 shows the decreasing number of knot points in a simulation based on
the dollar–pound exchange rate (3497 data points). We see that the number of knot
points decreases to 18 and then remains stable for the last three iterations. The SOM
algorithm has a width parameter which is generally pre-set and which decreases during
the course of the simulation. The nearest equivalent to the algorithm here are those
variants of the SOM algorithm which allow nodes to be dynamically added during the
course of a simulation (e.g. [2]). We consider the problem of selecting the value of
the smoothing parameter to remain an open question to which the results above can
only point the way to an answer.
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Table 6
The knot points (from a data set of 3497 exchange rates) after 1; 2 ; : : : ; 10 iterations of the twinned principal
curves algorithm

Knot points Day 1 Day 2 Day 3 Day 4 Day 5

1459 0.907 1.008 1.128 1.216 1.328
915 0.920 1.025 1.145 1.237 1.346
571 0.935 1.037 1.162 1.248 1.360
297 1.044 1.143 1.252 1.335 1.430
134 1.194 1.278 1.373 1.441 1.539
42 1.255 1.328 1.421 1.491 1.579
25 1.330 1.397 1.489 1.548 1.632
18 1.349 1.416 1.504 1.566 1.644
18 1.349 1.416 1.504 1.566 1.644
18 1.349 1.416 1.504 1.566 1.644

The simulation converges to a stable 18 knot points.

6. Conclusion

We have shown that the principal curve method can be extended to work on two data
sets simultaneously and that using two data sets is, in fact, advantageous in that there
is less chance of two projections simultaneously misleading than there is of a single
projection being misleading. Also when we use this algorithm to forecast, we have the
advantage that it is very simple to forecast a number of days ahead simultaneously: this
simply increases the dimensionality of the space through which the second principal
curve moves. The results from the foreasting were comparable to that from our previous
methods [4] and were considerably easier to achieve: we performed no optimisation to
get the reported results and found comparable results over a wide range of parameter
values.

However the known similarity between principal curves and SOMs suggested the
twinned SOMs algorithm and this was shown experimentally to outperform the twinned
principal curve algorithm in terms of minimisation of the mean absolute percentage
error on the -nancial data set. Of course this does not mean that the twinned SOM
algorithm will do better in every task and this is the topic for future research and,
in fact, on the task of forecasting students’ marks on one set of exams from those in
another set of exams, the twinned principal curve method performed best.

Finally, we consider that the task of forecasting may not be the best task for either
of these methods: the SOM is often most keenly appreciated when used as an aid to
visualising structure in high dimensional data sets and the principal curves algorithm is
also prominent in this -eld. Thus, one topic for future research will be a comparison
of these methods when used for visualisation.
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