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A Multi-agent approach is presented for identifying 
and forecasting the structure of the water ahead of an 
ongoing vessel. The work addresses the task of 
forecasting the behaviour of complex environments, 
in which the underling knowledge of the domain is 
not completely available, the rules governing the 
system are fuzzy and the available data sets are 
limited and incomplete. A hybrid approach is 
proposed that combines the ability of a Case-Based 
Reasoning System for selecting previous similar 
situations and the generalising ability of Artificial 
Neural Networks to guide the adaptation stage of the 
Case-Based Reasoning System. The successful 
application of the approach to oceanographic 
forecasting in the Atlantic Ocean is described. 

1. INTRODUCTION 

The World’s Oceans have physical, biological and 
thermal characteristics that change seasonally and 
annually. An ocean’s features change regularly; its 
location can vary several degrees in latitude or 
longitude (corresponding to a linear distance of 
100km). The present knowledge of the structure of the 
oceans is at present too weak to create a full model of 
their behaviour; however, it is possib le to model 
aspects of the behaviour of oceanic waters over 
limited areas. The “hybrid knowledge-based system” 
presented in this paper (Figure 1) has been designed to 
forecast the thermal structure of such water up to 40 
km ahead of an ongoing vessel using a Case-Based 
Reasoning (CBR) System and an Artificial Neural 
Network. The Case-Based Reasoning System selects a 
number of cases (from a large case base) and the 
Artificial Neural Network retrains itself in real time in 
order to produce the final forecast.  

The Artificial Neural Network (ANN) used in this 
investigation is a typical Radial Basis Function 
Network with characteristics that allow it to modify its 
internal structure depending on the characteristics of 
the waters in which the system is at any particular 
time. The learning method used in the system allows 
an Autonomous Agent to adapt to new situations and 
respond to oceanographic changes. The system 
produces more reliable forecasts than earlier methods. 
The paper outlines the oceanographic problem to be 
solved and discusses the CBR system and the Radial 
Basis Function ANN used for case adaptation. The 
forecasting strategy is compared with other methods 

and the application of the forecasting mechanism in 
the form of a multi-agent system is outlined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hybrid knowledge system 

2. THE OCEANOGRAPHIC ENVIRONMENT 

The oceans are in a continuous state of flux. The 
scales of physical motion of the oceans and the 
atmosphere range from being ocean wide, through 
many intermediate sizes (hundreds or thousands of 
km) to finally, tiny eddies (in the range of 50 to 
200km). At the edge of fronts (boundaries between 
water masses), small features between 10 to 50 km in 
amplitude can be detected. Between 1 and 10 km, 
local trends in the data set can be determined; 
movement of less than 1km represents the “noise” of 
the system. Furthermore, oceanic waters may be 
divided into largely homogeneous provinces, the 
variability of which can be easily described; Some 
provinces, e.g. the Arctic  and Antarctic convergence 
zones, are extremely heterogeneous and are more 
variable; these provinces have their own general 
characteristics that can be described and simulated.  

3. ARTIFICIAL INTELLIGENCE AND 
OCEANOGRAPHY SYSTEMS 

The hybrid artificial intelligence (AI) system being 
investigated combines connectionist and symbolic 
techniques with the aim of successfully forecasting the 
water temperature ahead of an ongoing vessel. The 
hybrid system is implemented in the form of an 
autonomous agent operating on each ship; these agents 
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can communicate with each other via a satellite 
system.  

This hybrid AI approach to the problem of predicting 
the oceanic environment offers potential advantages 
over a conventional algorithmic data processing 
approach, as it is able to deal with uncertain, 
incomplete and even inconsistent data. With 
oceanographic data acquired in real time only, it is 
difficult to obtain an accurate forecast using either 
ANNs alone or conventional statistical techniques [1]; 
also, existing oceanic prediction models cannot easily 
represent small scale processes that are important in 
obtaining accurate forecasts in a particular 
oceanographic region. The limited data sets and 
associated uncertainties in oceanography are difficult 
to handle using conventional data processing 
approaches.  

4. HYBRID SYSTEM 

The aim of this work is to develop a forecasting tool 
able to produce accurate results anywhere, in any 
ocean, at any time. Figure 2 shows the relationship 
between the processes that are part of the CBR-hybrid 
system. The cyclic CBR process shown has been 
inspired by the ideas described by Aamondt and Plaza 
[2].  

In Figure 2, shadowed words (together with the dotted 
arrows) represent the four steps of a typical CBR life 
cycle, the arrows together with the words in italics 
represent data flowing into, or out of the Case Base 
(situated in the centre of the diagram) and the text 
boxes represent the result obtained by each of the four 
stages of the CBR life-cycle. Solid lines show data 
flow and dotted lines indicate the order in which the 
processes that take part in the life cycle are executed.  
Data are recorded in real time by sensors in the vessels 
and satellite pictures are received weekly. The 
Knowledge Acquisition Module is in charge of 
collecting, handling and  indexing the data in the Case 
Base. Once the real-time system is activated on an 
ongoing vessel, a new case is generated every 2 km 
using the temperatures recorded by the vessel during 
the last 40km. This new case is used to retrieve  m 
cases from a collection of previous cases. 

The m retrieved cases are adapted by a neural network 
during the reuse phase to obtain an initial (proposed) 
forecast. Through the revision process the proposed 
solution is adjusted to generate the final forecast 
using the confidence limits from the knowledge base. 
Learning  (retaining) is achieved by storing the 
proposed forecast and knowledge (ANN weights and 
centres) acquired by the ANN after the training and 
case adaptation.  

4.1 Case Based Reasoning Operation 

In Case-Based Reasoning systems [3] the solution to a 
problem is obtained by remembering a previous 
similar situation and by reusing information and 
knowledge relating to the solution of that previous 
problem. CBR has been successfully used in several 
domains, for example: diagnosis, prediction, control 
and planning [4]. The operation of CBR involves the 
adaptation of old solutions to match new experiences, 
using past cases to explain new situations, using 
previous experience to formulate new solutions, or 
reasoning from precedents to interpret a similar 
situation. 

As explained in the previous section, ocean water 
features are very difficult to model and forecast using 
traditional techniques because of the lack of data, their 
incompleteness and the unpredictability of their 
changes. The models currently available can not 
accurately predict transient conditions. 

4.2 Case Representation 

Case representation involves specific knowledge about 
a particular situation. In applying CBR to 
oceanographic forecasting, a case is created to 
represent the ‘shape’ of a set of temperature values. 
There are two different types of cases: 

Case Type A is composed of: 

(i)  a 40 km temperature input profile  

 Input profile:  x0, x1, .., xk,  (where k = 40)  

representing the structure of the water between the 
present position of the vessel and its position 40km 
back; 

(ii) a 10km temperature output profile  

Output profile:  y0, y1, .., yq,  (where q = 10 )  

representing the structure of the water 10 km ahead of 
the present position of the vessel; 
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Figure 2: CBR-hybrid system architecture 

 



 

 

(iii) the latitude and longitude of the position of the 
vessel, time, day and year in which the data were 
recorded, and the tow orientation (North-South, 
South-East, etc).  

Case Type B is composed of the same fields with the 
difference that the profiles are 160km  

Input profile:  x0, x1, ..,xk,  (where k = 160)  

and a 40km temperature profile  

 Output profile:  y0, y1, ..,yk,  (where q = 40). 

Cases of type A are used to forecast up to 10 km 
ahead and Cases of type B up to 40km ahead of the 
current position of the vessel. Cases are stored in a 
Case Base which is composed of millions of data 
profiles recorded by the Plymouth Marine Laboratory 
during the last decade, during many oceanic trips. 
Also, together with those cases, others have been 
created from satellite images in order to form a 
complete Case Base for the Atlantic Ocean. Profiles 
are also created from data downloaded by an in situ 
sensor working in real time. 

4.3 Indexing Mechanism 

The complexity and the quantity of the data that the 
system is capable of handling, requires a simple but 
rigid indexing mechanism in order to minimise the 
retrieval time of the cases. 

Oceans have areas where the characteristics of the 
water mass, in terms of the evolution of the 
temperature, are relatively stable and the general 
characteristics of the water make them different from 
other water masses. Also the borders, limits or fronts 
between these water masses, can be located with 
relatively accuracy. Taking this into consideration, the 
indexing structure that is been implemented utilises 
the following data 

Water Mass (Location and dimensions): 
• Trend associated to the Water Mass 

Characteristics of the Trends 
• Satellite Images associated to the Water 

Mass 
Characteristics of the S. Images 

The water mass is either associated with a well known 
front or with a well defined area of the ocean. Each 
Water Mass has associated a number of data trends 
and satellite images, which name (if any), position 
(co-ordinates of the rectangle that contains the water 
mass or front), rules defining the cyclical change of 
location of the Water Mass (if known), etc. 

By indexing the data in this way, it is possible to 
access in an easy way the relevant data needed at any 

particular point in time at a certain location. This 
indexing structure minimises the retrieval time. 

4.4 Case Retrieval 

Data are recorded in real time, and the Input Profiles, 
of both case types (40km and 160km), are created. A 
search, in the Case Base, is made for all the cases that 
are relevant within a radius of 3 degrees (300km) 
around the present situation of the vessel. Cases whose 
Input Profiles have the same orientation as the present 
one (i.e. North-South, North-West, South-East, etc.) 
are selected from this subset. These profiles are 
compared with the profile just recorded; three metrics 
are used by the retrieval algorithm with values that 
determine the similarity between the present case and 
each of the ones selected from the Case Base.  

The three metrics used in the retrieval process were 
selected because each of them gives priority, in the 
retrieval, to cases based on different criteria that 
complement each other. These metrics (defined 
below) enable cases to be retrieved whose input 
profile is similar to the present one with respect to its 
general temperature similarity (Gradient 1 and 
Gradient 2) and with respect to the general trend in 
temperature (Gradient 3). 

• Gradient 1 

This metric compares the shape of the present 
temperature profile with the shape of all the profiles 
stored in the case-base using the following equations. 

G1a, the value of Gradient 1 used to retrieve cases of 
type A, is given by 

( ) ( )( )x x xa xa ii i
i
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where the vector x represents the present Input Profile 
for which a forecast should be retrieved, and xa 
represents each of the vectors retrieved by the CBR. 

G1b, the value of Gradient 1 used to retrieve cases of 
type B is given by  

( ) ( )( )x x xa xa ii i
i
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where the vector x represents the present Input Profile 
for which a forecast should be retrieved, and xa 
represents each of the vectors retrieved by the CBR 
mechanism. 

The gradients define the shape of each tow. The aim 
of this metric is to compare the structure of the present 
profile with the profiles stored in the Case Base. The 
smaller the value of the metric, the more similar will 
be the retrieved case to the Present Input Profile . 

 



 

 

• Gradient 2 

This metric is similar to the previous one, the 
difference being that the data is averaged using a 
window of 10% of the length of the Input Profile. 
Also, only the difference between the present 
temperature and one temperature value in every ten 
values, for cases of type A, (and one temperature 
value in every twenty values, for cases of type B) of 
each temperatures profile are used to calculate the 
value of the metric. 

Gradient 2 gives a more general indication of the 
similarity between the present case and the retrieved 
ones than the previous metric. 

• Gradient 3 

The output of this metric is the absolute value of the 
difference between the gradient of the Present Input 
Profile and each of the cases retrieved from the Case 
Base. The gradient is calculated using the average 
value from the first value and the last 20% of the 
values of each Input Profile.  

For a case of type A: 
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For a case of type B: 
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This metric shows the similarity in the general 
evolution of the water temperature between the 
present case and the ones retrieved from the Case 
Base. 

5. Case Adaptation (reuse phase) 
Work has been carried out elsewhere into hybrid 
systems in which CBR components co-operate with 
one or more reasoning elements [5]. In particular, there 
are a number of CBR based systems reported that use 
Constraint Satisfaction, Numeric Constraint 
Satisfaction, Model Based Reasoning, etc., for case 
adaptation.  

Adaptation is one of the most difficult sections of the 
CBR cycle. Most adaptation techniques are based on 
generalisation and refinement heuristics. The novel 
approach, presented here, is based on ANNs and their 
ability to generalise. The ANN acts as a function that 
obtains the most representative solution from a 
number of cases which are the ones most similar to 
the current situation. 

The 30 best matches of each metric, presented in 
Section 4.4, are used to train a Radial Basis Function 

ANN in the adaptation stage. The algorithm developed 
for the construction of Radial Basis Function (RBF) 
networks used in this experiment is a variation of the 
general one [6]. In a Radial Basis Function ANN the 
input layer is a receptor for the input data. The hidden 
layer performs a non-linear transformation from the 
input space to the hidden layer space. The output 
neurons merely calculate a linear combination of the 
hidden neurons’ outputs.  

Activation is fed forward from the input layer to the 
hidden layer where a Basis Function, which is the 
Euclidean distance between the inputs and the centres 
of the basis function, is calculated [7]. The weighted 
sum of the hidden neuron’s activations is calculated at 
the single output neuron. The complexity of this ANN 
depends on the difficulty of determining which centres 
to use and where to locate them. The architecture 
presented in this paper automates this process and 
guarantees a number of centres very close to the 
minimum number that gives optimum performance. 

The aim of the system is to forecast the water 
temperature up to 40km (i.e. at points 2.5, 5, 7.5, 10, 
20, 30 and 40Km) ahead of a moving vessel. For this 
purpose two RBF ANNs are used: one uses cases of 
type A (to forecast up to 10km ahead) and the other 
uses cases of type B (to forecast between 10 to 40km 
ahead). Cases are coded in order to create the input 
and output vectors used to train the ANN. 

The ANN trained with cases of type A (ANN A) uses 
nine input neurons, between 10 and 25 neurons in the 
hidden layer and one neuron in the output layer. The 
input data is a set of values, each of which is the 
difference between the last temperature (of the Input 
Profile) and the temperature values of the input profile 
taken every 4km. Only one neuron is used in the 
output layer to forecast up to 2.5km ahead; this output 
is fed back into the ANN in order to predict the 
following values up to 10km ahead. The output is the 
difference between the temperature at the present 
point and the temperature 2.5km ahead. 

The ANN trained with cases of type B (ANN B) uses 
15 neurons in the input layer, between 15 and 35 
neurons in the hidden layer and one neuron in the 
output Layer. The input data is the gradient between 
the last temperature (of the Input Profile) and the 
temperature values taken every 10km ahead. Only one 
neuron is used in the output layer to forecast up to 
10km ahead; this output is fed back into the ANN in 
order to predict the following values up to 40km. The 
output is the difference between the temperature at the 
present point and the temperature 10km ahead.  



 

 

5.1 Initialisation 

Initially, ten vectors are randomly chosen from the 
input data set and used as centres in the middle layer 
for the ANN of type A; fifteen vectors are chosen and 
are used for the ANN of type B. All the centres are 
associated with a Gaussian function. The width of the 
Gaussian for all the functions is set to the mean value 
of the Euclidean distance between the two centres that 
are further apart from each other. 

5.2 Centre and Weight Adaptation 

Training of the network is done by presenting pairs of 
input and desired output vectors. After an input vector 
activates every Gaussian unit to some degree these 
activations are propagated forward through the 
weighted connections to the output units which sum 
all incoming signals. The comparison of actual and 
desired outputs gives information for this input pattern 
from which the error is calculated using the Least 
Mean Square Rule [6]. 

The centre closest to each particular input vector is 
moved toward the input vector by a percentage α of 
the present distance between them. By using this 
technique the centres are positioned close to the 
highest densities of the input vector data set.  The aim 
of this adaptation is to force the centres to be as close 
as possible to as many vectors from the input space as 
possible. An adaptation of this kind is particularly 
important because of the high-dimensional nature of 
the input layer. The value of α is initialised to 20 
every time that the ANN is retrained, and its value is 
linearly decreased with the number of iterations until 
it becomes 0; then the ANN needs to be trained for a 
number of iterations (between 10 and 30 iterations for 
the whole training data set, depending on the time left 
for the training) in order to obtain the best possible 
weights for the final value of the centres.  

The delta rule [6] is used to adapt the weighted 
connections from the centres to the output neurons. In 
particular, for each presented pair of input and desired 
output vectors, one adaptation step is made, according 
to the delta rule.  

5.3 Insertion of new units 

A new centre is inserted in the network when the error 
computed by the ANN does not fall more than 10% 
after ten iterations. In order to determine the most 
distant centre, C, the Euclidean distance between each 
centre and each input vector is calculated and the 
centre whose distance from the input data vectors is 
largest is chosen. A new centre is inserted in between 
C and the closest centre to it. Centres are also 
eliminated when they do not contribute significantly to 
the output of the ANN. Thus, if the absolute value of 
the weight associated with a neuron is smaller than 

0.05, the neuron is eliminated. The number of neurons 
in the middle layer is controlled so as to be never less 
than 10 for ANN A and 15 for ANN B. This is a simple 
and efficient way of reducing the size of the ANN 
without decreasing its memory. This method is 
possible because the relevance of each weight 
increases as its absolute value increases. 

5.4 Termination of training 

ANN A is trained for 2.2 minutes and ANN B is trained 
for 3.3 minutes. In real time mode the ANNs need to 
produce a forecast every 2km (corresponding to 6 
minutes for a speed of 12 knots, which is the 
maximum speed that the vessel can attain). After this 
time a new set of training cases is retrieved by the 
CBR and the ANNs are retrained. Therefore, even if 
the error is high the ANNs should produce a forecast. 
It has been shown, empirically, that these training 
times are sufficient to train the ANNs and to obtain an 
output average error of 0.04 with an error smaller than 
0.08 in 98% of the situations. 

The other two phases of the CBR cycle presented in 
Figure 2 are the Review and Retain . Phases. A review 
of cases is achieved by the use of confidence limits 
that modify the output of the ANN depending of the 
accuracy of the previous forecasts. During the retain 
phase the internal knowledge of the ANN (such as 
weights, centres, etc.) is stored in the data base. 

6. The Autonomous System 

Figure 3 shows the system architecture. Data is logged 
in real time; then it is both displayed and stored in a 
database. Every 2km the CBR mechanism retrieves 

the cases that match the most recent profile, based on 
the previously mentioned metrics, and passes them on 
to the ANNs, which produce the forecast. The 
Communication Module handles the communication 
between all the active agents of the multi-agent 
system.  
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Figure 3: Autonomous agent architecture  



 

 

7. Results and Conclusions  

The methodology presented in this paper was tested 
using data recorded in the Atlantic Ocean in the 
summer of 1995. The obtained results were very 
encouraging and a single autonomous agent was built, 
installed in a vessel and tested in real time. The Case 
Base was loaded with satellite images recorded during 
the first week of September, 1997, and also with 
almost 2000 cruise tracks recorded during the last 3 
years. The system was tested during the second week 
of September, 1997. 

Distance 
ahead of the 
vessel (km) 

Average error 
in the ANN 

forecast. 

Average 
Confidence 

Limit 

Average. 
error after 
the review 

2.5 0.0098 0.011 0.0001 

5 0.017 0.015 0.0011 

7.5 0.025 0.023 0.0106 

10 0.046 0.051 0.0124 

20 0.156 0.170 0.0117 

30 0.194 0.202 0.0132 

40 0.285 0.246 0.0560 

Table 1: Forecasting Results 

Table 1 shows the average error in the prediction by 
the RBF ANN after the adaptation, together with the 
value of the confidence limits calculated during the 
review phase and the average error in the predictions 
outside the confidence limits. The results indicate the 
potential of the method and the advantage of using the 
ANN. To evaluate the accuracy of this method, these 
results have been compared with others obtained from 
a Finite Impulse Response (FIR) model [8], an RBF 
ANN (trained with the data recorded during the 
160km previous to the forecast point), a linear 
regression model, an Auto-Regressive Integrated 
Moving Average (ARIMA) model and a CBR system 
(using the cases generated during the 160km previous 
to the forecast point). Table 2 shows the average error 
in the forecast up to 5km ahead using all of these 
methods. 

Table 2 shows that, using the hybrid system, the error 
in forecasting up to 5km ahead is less than 20% of the 
error obtained using any of the other methods. For 
larger distances, the forecasting error with the hybrid 
method has been found to be between 15 to 50% of 

the error from any of the other methods. Its design as 
an autonomous system facilitates its implementation. 
A full multi-agent system is currently being developed 
with the aim of employing it on board several vessels. 

Algorithm Type Average Error 

FIR ANN 0.091 

RBF ANN 0.103 

Linear 
Regression 

Statistics 0.131 

ARIMA Statistics 0.107 

CBR CBR 0.113 

Hybrid CBR-ANN CBR - ANN 0.017 

Table 2: Comparison of methods (5km 
forecast) 
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