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Industrial bioprocesses development nowadays is concerned with producing chemicals using yeast, bac-
teria and therapeutic proteins in mammalian cells. This involves the utilization of microorganism cells as
factories and re-engineering them in silico. The tools that could facilitate this process are known as the ki-
netic models. Kinetic models of cellular metabolism are important in assisting researchers to understand
the rational design of biological systems, predicting metabolites production, and improving bio-products
development. However, the most challenging task in model development is parameter estimation, which
is the process of identifying an unknown value of model parameters which provides the best fit between
the model output and a set of experimental data. Due to the increased complexity and high dimension-
ality of the models, which are extremely nonlinear and contain large numbers of kinetic parameters,
parameter estimation is known to be difficult and time-consuming. This study proposes a cooperative
enhanced scatter search with opposition-based learning schemes (CeSSOL) for parameter estimation in
large-scale biology models. The method was executed in parallel with the proposed cooperative mecha-
nism in order to exchange information (kinetic parameters) between individual threads. Each thread con-
sists of different parameters settings that enhance the systemic properties in obtaining the global min-
imum. The performance of the proposed method was assessed against two large-scale microorganisms
models using mammalian and bacteria cells. The results revealed that the proposed method recorded
faster computation time compared to other methods. The study has also demonstrated that the proposed
method can be used to provide more accurate and faster estimation of kinetic models, indicating the
potential benefits of utilizing this method for expert systems of industrial biotechnology.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

(Robles-Rodriguez et al., 2017). In a bioreactor, fed-batch culture
converts substrates (i.e. glucose) to desired metabolites, notably

Pharmaceutical products and dairy foods are mostly pro-
duced during the fermentation process in a fed-batch culture
(Park, Kim, Lee, & Lee, 2011). This process is a part of metabolic
engineering, which is a practice in industrial biotechnology
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lactic acid (Oh et al., 2011; Zain, bin, Kanesan, Kendall, & Chuah,
2018). The host cell plays an important role in this process, which
acts as a factory to produce the desired metabolites (products)
under the controlled condition. Bacterium cells with high growth
rate such as Escherichia coli (E. coli) and Saccharomyces cerevisiae
(S. cerevisiae) are widely used as cell factories in scientific research
as well as in producing food and dairy (Dobson et al., 2010; Park
et al., 2011). Moreover, mammalian cells such as Chinese hamster
ovary (CHO) has been used to manufacture therapeutic proteins
such as insulin for diabetes treatment (Ahn & Antoniewicz, 2012).
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Nowadays, computational modeling in systems biology plays an
important role in assisting metabolic engineering through in sil-
ico approach. The biological processes of a cell could be formu-
lated via a mathematical model using ordinary differential equa-
tions (ODEs) to mimic the behavior of a real cell. Thus, by utiliz-
ing and simulating the model, biologists can understand, predict
and improve the products in order to meet the industrial demands
(Cvijovic, Bordel, & Nielsen, 2011). One type of model which is ca-
pable of executing this task is the kinetic model (Billa et al., 2017;
Saa & Nielsen, 2016). Mechanistic and dynamic details of a kinetic
model signify various beneficial information such as biochemical
reactions, cell compartments, and rate of metabolites concentration
(Miskovic, Tokic, Fengos, & Hatzimanikatis, 2015). The development
of kinetic models provides a novel paradigm in the rational design
of cell factory which could be beneficial in various biotechnology
applications (Jahan, Maeda, Matsuoka, Sugimoto, & Kurata, 2016).

Recently, research efforts have been focused on building large-
scale kinetic models. These large models could be employed to
predict near-optimal alterations required to improve desired prod-
ucts and simultaneously maintain other functions in the host in a
minimal but essential level. This provides benefits in terms of ra-
tional design in cell factories. For instance, current kinetic model-
ing practice involves scaling-up a specific metabolic process such
as glycolysis from pathway level to genome level. With such ef-
fort, the interaction of biochemical reactions in this process could
be investigated at the genome level. This proves an opportunity
for biologists to clone the glycolysis pathway to a new host and
observe its effects (Gabor, Villaverde, & Banga, 2017; Smallbone &
Mendes, 2013). In the near future, the ultimate goal of large-scale
kinetic models is to create whole-cell models which provide dra-
matic impact in the field of systems biology and metabolic engi-
neering (Karr, Takahashi, & Funahashi, 2015; Macklin, Ruggero, &
Covert, 2014).

However, one of the most daunting tasks in the large-scale
model building is parameter estimation, commonly known as
system identification or model calibration (Gottu Mukkula &
Paulen, 2017). This task consists of applying global optimization
methods in order to explore unknown values of model parameters
that provide the best fit between model prediction and a set of
experimental data. Kinetic models with hundreds to thousands of
kinetic parameters cause a serious challenge in parameter estima-
tion due to the high dimension of search space that is required to
be explored. Thus, in high dimensional kinetic models (such mod-
els may contain hundreds to thousands of parameters), the per-
formance of most optimization methods, especially those using se-
quential metaheuristics, tend to deteriorate and is deemed expen-
sive in terms of computational cost. Therefore, in order to tackle
this issue (especially to reduce the CPU time), parallelization using
cooperative search could be performed (Li & Wang, 2014; Penas,
Gonzalez, & Egea, 2017; Villaverde, Egea, & Banga, 2012).

The cooperative search strategy is one class of metaheuris-
tic optimization technique that aims to speed up computational
times, convergence rate, and produce a robust algorithm (Alba,
2005; Crainic & Toulouse, 2010; EI-Abd & Kamel, 2005; Nedjah
et al.,, 2016; Ngo, Sadollah, & Kim, 2016). The main benefit of this
technique is that it reduces the computational effort when deal-
ing with large-scale data (Martin, Ouelhadj, Smet, Vanden Berghe,
& Ozcan, 2013). The idea behind this strategy is that algorithms
will exchange and share information between search agents (global
and local searches). Algorithms with different settings will run in
parallel and the results will be gathered and exchanged in or-
der to produce a better solution. Cooperative search is one of
the techniques in parallel metaheuristic methods (Crainic & Gen-
dreau, 2002; Crainic, Gendreau, Hansen, & Mladenovi¢, 2004; Cruz
& Pelta, 2009; El-Abd & Kamel, 2005; Talbi & Bachelet, 2006).

One of the prominent methods that have been proposed when
dealing with large-scale models is cooperative enhanced scatter
search (CeSS) proposed by Villaverde et al. (2012). CeSS is the par-
allel version of enhanced scatter search (eSS) (Egea et al., 2014;
Egea, Marti, & Banga, 2010). The method benefits from multiple
threads of eSS that could run in parallel. This method exchanges
information between threads in fix time intervals. Each thread con-
sists of different parameter settings that lead to different perfor-
mance and search pattern among them. Thus, it acts like a macro-
scopic behavior due to the interaction that occurs between individ-
ual threads, while this strategy influences the systemic properties
in each eSS thread. The method is able to reduce computation time
and is efficient in searching different regions of the search space.
However, the proposed method faces serious issues in terms of ef-
ficiency and scalability when dealing with the large-scale model.

Differential evolution (DE) is widely used and studied in param-
eter estimation of biological systems (Chong et al., 2014; Zuiiga,
Lopez Cruz, & Garcia, 2014). However, this method results in high
computation time due to the high dimensional dataset used. One
variant of the parallel method using DE was proposed to over-
come excessive computational cost on large datasets (Penas, Banga,
Gonzalez, & Doallo, 2015). The method takes advantages of asyn-
chronous parallel implementation and hybrid global and local
search. Moreover, three heuristics local searches were also used for
cooperation toward global minimum including local solver, tabu
search, and logarithmic search In order to test this method, the
experiment was performed using cluster CPU employing 16 nodes
multicores processor. The result indicated that the method could
significantly reduce the computation effort required. The main
weaknesses of the method are that it is time consuming and chal-
lenging to tune the control parameters when it involves a large
number of processors and multiple local searches.

Recently, a variant of the cooperative search method known as
the self-adaptive cooperative enhanced scatter search (saCeSS) was
proposed which extends CeSS (Penas et al., 2017). It provides sev-
eral novel mechanisms in terms of asynchronous cooperative and
self-tuning strategies. This promising method employs parallel im-
plementation using coarse-grained and fine-grained parallelization.
The method could be performed on High Performance Computing
(HPC) systems including clusters of multicore nodes based on Mes-
sage Passing Interface (MPI). The strength of this method is that it
is able to significantly reduce the computational time in compar-
ison to previous methods (from days to minutes, as reported in
several cases). However, this method requires expensive computa-
tional resources to achieve significant result via the use of multi-
core cluster with a large number of nodes. This factor limits the
usage of this method especially in solving large-scale kinetic mod-
els and whole-cell models.

In view of expert systems, cooperative search metaheuristic
serves as an intelligence process to search near-optimal values
of kinetic parameters in the model. The process consists of gen-
erating initial random solutions as inputs which were iteratively
improved using cooperative mechanism and parallel implementa-
tion of global optimization in order to produce the outputs (near-
optimal values of kinetic parameters). The parameter value ob-
tained in that process is plugged into the ODE model for the sim-
ulation purpose, which is the ultimate goal of modeling. By means
of an established (accurate) model, the simulation can be prepared
by fitting the model with experimental data. From this process, the
model can be seen as a cell factory tool that can answer various
biological hypothesis and as an alternative way to conduct a wet
laboratory experiment. The model can be utilized to predict, eval-
uate, and explore different scenarios of biological processes. For
instance, the level of metabolite concentration (in millimolar) can
be predicted based on fermentation process duration without the
necessity of execution of wet lab experiment. This allows biolo-
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gists to design multiple experiments, conduct significant modifica-
tions and improve production, quality, and bioproduct process de-
sign (Almquist, Cvijovic, Hatzimanikatis, Nielsen, & Jirstrand, 2014).

In this study, a cooperative enhanced scatter search with
opposition-based learning schemes (CeSSOL) has been proposed
for parameter estimation in high dimensional kinetic models of bi-
ological systems. The proposed method is capable of reducing the
computation time as well as providing a robust method in terms
of solution quality (minimum value of the objective function). It is
expected that the performance of the proposed method is better in
dealing with high dimension parameter estimation problems when
the low-cost computational resource is used (multicores on a sin-
gle workstation). Specifically, the main contributions of this study
are:

(1) In the proposed CeSSOL, a recent variant of eSS, known
as SSCOL (scatter search with combined opposition-based
learning) (Remli, Deris, Mohamad, Omatu, & Corchado, 2017)
has been utilized as the individual thread which is executed
in parallel using a small number of processors. SSCOL has
been successfully applied in parameter estimation and large-
scale global optimization problems. In SSCOL, different types
of opposition-based learning schemes have been proposed
at different stages of search processes. For instance, in diver-
sification generation method, quasi-opposition based learn-
ing has been introduced for enhanced initialization. A simi-
lar scheme was applied in solution combination method of
SSCOL in order to enhance the reduced parameter space for
rapid convergence. In addition, quasi reflection intensifica-
tion was introduced in order to improve the intensification
phase. In previous work, SSCOL was proposed and imple-
mented in a serial run and expensive computation time. In
contrast, the proposed method is implemented in a parallel
manner using similar CPU resources as in SSCOL case which
resulted in faster estimation to be potentially utilized in in-
dustrial biotechnology applications.

In this study, an information exchange strategy between in-
dividual SSCOL thread based on good and diverse solutions
was proposed that is capable of efficiently searching broad
region of solution space. In previous work (Villaverde et al.,
2012), the kinetic parameters values to be shared among
threads were based on the best solution found and the rest
of the solutions (RefSet). To the best of our knowledge, this
has limited the diversity of the search region and tends to
stuck in the local minima. In this study, two solutions found
(good and diverse) were utilized among all threads to be
applied as initial solutions along with new initial random
values generated in the initialization stage. These solutions
were then improved by SSCOL. The proposed strategy is ex-
pected to search a wider area of fitness landscape that can
provide a more accurate estimation. Finally, the proposed
CeSSOL method outperforms the state-of-the-art 8-SSCOL (a
parallel version of SSCOL method) on both solution quality
and computation time.

(2

~—

This paper was organized as follows. Section 2 formulates the
parameter estimation problem, which consists of minimizing non-
linear least squares function with several constraints. Section 3 de-
scribes the recent method, SSCOL, which was proposed to solve
parameter estimation problems. Section 4 introduces the pro-
posed method in this paper, stated as cooperative enhanced scatter
search with opposition-based learning (CeSSOL). Section 5 demon-
strates the experimental setup including dataset used and other
methods for comparison. Section 6 discusses the result obtained
from the computational experiment and comparison made with
previous works. Finally, Section 7 concludes the findings and fu-
ture works of the research.

2. Problem formulation

Parameter estimation in metabolic engineering application con-
sists of the process to identify the unknown value of parameters
in kinetic models of biological systems. The parameters determine
the accuracy of model prediction where they provide the best fit to
the experimental data. This problem is also formulated as a global
optimization problem. Optimization methods can be utilized in or-
der to minimize the distance between predicted model and exper-
iment data, which is formulated as nonlinear least squares (NLS)
function (Moles, Mendes, & Banga, 2003; Villaverde et al., 2015):

o _ 2
]:ZM (1)

pur (0°)°

where ] is the objective function, n, is the number of measured
states (metabolite products), ym is the measured states, p is the
kinetic parameters for estimation, and o is the weight to balance
the contribution of a different order of magnitude in metabolite
products.

Minimization process of the NLS is subject to the following con-
straints:

X=f(x.p.t) (2)
X(to) = Xo (3)
y=8xp.0) (4)
p=p=<p’ (5)

where x is the state variable and f is the function describing sys-
tems dynamics in the nonlinear biochemical process model. The
initial condition (concentrations) of x at time zero ty was denoted
as xg while g is an observation function and p is the kinetic pa-
rameters in the range of lower bound p* and upper bound pU.
Biological processes that occur in microorganism cells such as
metabolism and enzymatic reactions are highly nonlinear. ODEs
models which represent these processes are known to be com-
plex with many interdependencies involved between dynamic state
variables (metabolites) and higher order interrelationship among
kinetic parameters (Li & Vu, 2013). Highly nonlinear systems in
ODEs cause multimodality in optimization landscape where local
minima exist (Moles et al., 2003; Villaverde et al., 2012). This phe-
nomenon causes most optimization methods to easily converge in
local minima and reduces the predictive ability of the model. Thus,
a highly nonlinear model poses a critical challenge in obtaining
near-optimal model parameter values.

3. Enhanced scatter search with combined opposition-based
learning (SSCOL)

SSCOL is a recent variant of scatter search (eSS) (Egea et al.,
2010; Riahi, Khorramizadeh, Hakim Newton, & Sattar, 2017) that
was proposed in order to solve large-scale and challenging param-
eter estimation problems (Remli, Mohamad, Deris, Napis, Sinnott, &
Sjaugi, 2017). It is the extension of eSS (Egea & Balsa-Canto, 2009;
Egea et al., 2010) which has been improved in terms of a combina-
tion of opposition-based learning schemes. The schemes are intro-
duced in several parts of eSS which made it efficient, particularly
for improving the speed of convergence, when dealing with high
dimensional problems. This method performs extensive exploration
and intensification in the search space. Contrasting to the orig-
inal eSS, SSCOL employs quasi-opposition based learning scheme
in the RefSet formation. Since the RefSet size is small, only half of
the original Refset is subject to evaluation in order to generate a
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Table 1
Algorithm 1. Scatter Search with Combined Opposition-based Learning Schemes (SSCOL).

Input : Experimental data, model parameter values (randomly generated within bounds)
Output : Near-optimal model parameter values

1: Generate initial RefSet with high quality and quasi-opposite members

2: repeat

3: Sort RefSet by quality [x',x2, ..., xdim_refset] 5o that
fixy < fiX) where i,j € [1,2,..., dim_refset] and i < j

4: if max(abs(*3%)) < € with i < j then
5: Replace ¥ by a random solution

6: end if

7. fori=1 to dim_refset do

8: Combine x' with the rest of population members to generate a set of dim_refset new
members, offspring’ using quasi-reflection combination

9: ng £ =best solutions in offspring!

10:  if x;ff outperforms x' then

11: Apply quasi-reflection intensification and perform quasi-reflection with probability
12: end if

13: end for

14: Update best solution found x;.s; and its objective function value fyes
15: Perform a local search from X to obtain x* based on competitive ranking initial
selection and balance between quality and diversity

16: if fix*) < flXpest)

17: Update Xpest, fpest

18: end if

19: until stopping criterion is met

Note: The introduced opposition-based learning schemes are shown in lines 1, 8 and 11.

quasi-opposite solution. Hence, the method is able to provide high-
quality RefSet with fewer function evaluations. Moreover, the orig-
inal combination method in eSS has been modified to efficiently
accelerate the search process in high dimensional search space.
The modification employs quasi-reflection combination to quickly
reach a high-quality solution, which leads to faster convergence.
Another additional feature in SSCOL is the introduction of jump-
ing rate jr to perform intensification using quasi-reflection. The
feature improved the intensification phase by generating a quasi-
reflection solution to accelerate search process. These three modi-
fications, which were based on a combination of opposition-based
learning schemes, significantly improved the performance of orig-
inal eSS in terms of convergence speed and solution quality. Fur-
ther details regarding this optimization method can be found in
Remli et al. (2017). Table 1 depicts the SSCOL algorithm.

SSCOL is considered as a better metaheuristic method compared
to the original eSS. However, when dealing with a large number of
parameters the computational cost is still excessive due to the high
dimensional (hundreds of kinetic parameters) search space that is
required to be explored.

4. Cooperative enhanced scatter search with opposition-based
learning (the proposed method)

In this study, an improved cooperative metaheuristic method
known as CeSSOL (cooperative enhanced scatter search with
opposition-based learning) is proposed. This method shares
the idea of cooperative enhanced scatter search (CeSS)
(Villaverde et al., 2012) but is different in terms of three fun-
damental modifications. Firstly, this method employs SSCOL for
parallel threads, which has been proven to solve parameter esti-
mation problems. Secondly, the information exchange strategy in
this method utilizes good and diverse solutions as well as newly
generated random solutions in order to form a RefSet for each
thread. The strategy is not restricted to all members of RefSet for
information exchange which is driven by the best solution found,
and the RefSet that contains information regarding the diversity
of solutions. Thirdly, this method employs a number of function
evaluations for stopping condition in each thread instead of CPU
time. The main strategy in CeSSOL is to execute an optimization
process via several threads n in parallel execution. Each thread

implements an optimization method using SSCOL. During the
optimization process, information (solutions or kinetic parameters)
in RefSet ref; are exchanged between threads for every cooperative
iteration coj,,. Thus, those RefSet which has high quality solutions
will be used in order to further guide the search process and thus
enhancing the systemic properties in every SSCOL. It should be
noted that the cooperative search method does not solely speed
up the computational time, but it is expected that it could produce
a robust result in solving challenging optimization problems. Fig. 1
and Table 2 demonstrate the flowchart and pseudocode of the
proposed CeSSOL, respectively. The final output of this method is a
near-optimal set of kinetic parameters which can be found in the
supplementary material.

4.1. Schematic representation of CeSSOL

To reap full benefit from the implementation of a coopera-
tive search method, multicores processor is required. In order
to run multiple parallel SSCOL threads in the MATLAB environ-
ment, jPar library which consists of three components was adopted
(Karbowski, Majchrowski, Trojanek, Pokorski, & Zatuga, 2015):

1) Registration server
2) Solvers (Slave threads)
3) Client (Master thread)

The first process involves starting the registration server using
a single Java executable JAR file through the command line. The
registration server is responsible for managing a set of solvers
(threads). Then, several MATLAB instances were launched. One of
the instances was used for the jPar console (as Master thread
or central processor) and the rest were used for solvers (Slave
threads). The Slave threads were started in the same directory and
once they have been started, they will wait for input to be pro-
cessed. Each slave thread blocks the current MATLAB session until
a new task is available, while the Master thread acts as a client or
central processor which manages all tasks including dividing the
data into chunks and distributing parameter setting for all threads.

Fig. 2 depicts the schematic representation of CeSSOL. Every
thread has one MATLAB session running SSCOL method while
thread 0 acts as a central processor. Information exchange strategy
between cooperative iteration enables each thread to benefit from
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Initialize master thread
v
Set common parameters for all
threads
v

Set control parameter for each thread

Function evaluations
nfeval., met?

No

Yes
A 4

Get the best solution X, (Equation 7)

v

Get the diverse solution X, (Equation 8) |

No
Set Xin and Xp,ax as initial solution
]
Note: The number of cooperative
iterations is defined as how many Cooperative iteration
iteration  of arallel  SSCOL
threads to bep run at fixed Coite'mEt?
intervals. The COjter is set to 5
iterations after trial and error Yes Legend
because this value gives the best h 4 . .
performance for tﬁe parameter . :l Modification
estimation problems. Near-optimal value Original CeSS
of kinetic parameters L] (z‘ggg;’e’de etal,
L _ JI Parallel run
End T i Information
feeeeeeed exchange strategy
Fig. 1. Flowchart of the proposed CeSSOL method.
Table 2
Algorithm 2. Cooperative Enhanced Scatter Search with Opposition-based Learning (CeSSOL).
Input : Experimental data and randomly generated kinetic parameters values
Output : Near-optimal values of kinetic parameters
1: Initialization of Master (Processor 0) and Slave (Processor j) threads
2: Set parameters that are common for all threads
3 Set control parameters for each thread
4: Initialize global reference set (RefSet) array: Globales=[]
5: for i=1 to coy, do
6 for j=1to n do
7 Slave thread j (parallel processing): run optimization using SSCOL (Algorithm 1)
8: (Algorithm 1)
9: if nfeval, then
10: if ref;¢ Global,,; then
11: Global,e; = [Globalypref;]
12: end if
13: Assign good and diverse solutions as initial solutions for next coj,, in all threads (Algorithm 3)
14: in all threads (Algorithm 3)
15: end if
16: end for
17: end for
18: Final solution = best solution in Global,s

Note: nfevalg, is the number of function evaluations for all threads. This stopping condition is for all threads based on the predefined
value from Eq. (6).

ref; is the RefSet that contains unique solutions from each thread j.

COjeer is the number of cooperative iteration and this value can be set based on trial and error. Starting from cooperative iteration 2,
all threads receive two solutions (best and diverse) as initial solutions while the rest of the solutions is completed by using a random
number. From that, the new RefSet with the fixed size is created.
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_ entral Processor
TIME =0 @ INITIALIZATION
/ } \ (Launch threads)
Thread 1 Thread 2 Thread 77
(sscot) (sscoL) (sscot)
nfeval, === === COyeys = 1
\ entral P rocessor \/ INFORMATION
o (Thread0) " EXCHANGE
__________ el ______i________\_‘____________.
Thread 1 Thread 2 Thread 7
{sscoL) (sscoL) (sscoL)
nfeval,, —== —== = co. =2

v
e
Thread 0
EXCHANGE
« \

Thread 1 Thread 2 Thread 5
(sscoL) (sscoL) (sscoL)
nfeval,, —
P A || 2
REPEAT CO ‘m’ times

iters

v

Thread 0
v Legend
nfeval,, = Number of function

Near-optjma! evaluations per thread
value of kinetic
TIME | parameters €O, =Cooperative iterations

Fig. 2. Schematic representation of CeSSOL (adopted from Villaverde et al., 2012).
The number of cooperative iteration co., is defined by the number of iteration of
all the SSCOL threads to be run at fix intervals.

the solutions gathered by other threads. It should be noted that
every SSCOL thread has a different parameter setting to vary the
search behavior among them. Thus, the proposed method changes
the systemic properties for all SSCOL threads in order to find global
minimum, especially for challenging optimization and parameter
estimation problems. Additional details on parameter setting in all
SSCOL threads will be discussed in the next subsection.

4.2. Common parameters for all threads

All SSCOL threads share common parameters that are number
of diverse solutions (ndiverse), RefSet size, number of function eval-
uations, jumping rate, and local search. The ndiverse for each SSCOL
thread is set to the recommended size as described in the previ-
ous work (Remli et al., 2017). The size that is ten times bigger than
the size of kinetic parameters is employed in order to ensure that
the initial solutions are sampled in the broad area thus increas-
ing the chance of obtaining global minimum. In order to reduce
the time required for evaluating objective function, the RefSet size
must be set to a lower number. In this method, the RefSet size was
set manually by trial and error method after the initial exploratory
run was performed.

In terms of function evaluations, every thread has the same
number of function evaluation, which was used as the stopping
condition for each SSCOL thread. Thus, this study defines a new
tunable parameter of function evaluations for each cooperative

Table 3
Parameter setting for all common SSCOL threads.

Parameters Values

Number of diverse solutions (ndiverse) 1,170 for CHO and 1,160 for

CCM
RefSet size (dim_refset) 10
Number of function evaluations for 24,000 for CHO and 18,000 for
every thread per iteration CCM
Jumping rate J; 0.3

Local search

fmincon

Note: Number of function evaluations for every thread per iteration is set accord-
ing to Eq. (6). CHO is the Chinese hamster ovary cell, while CCM is central carbon
metabolism. Both datasets were used to test and evaluate the proposed method.
More description of this data can be observed in the experimental setup section.

Table 4
Control parameters for each thread.

Parameter Description

local.n2 Number of iterations between two
local searches

balance Balance between diversification and

intensification of initial points for local
search

thread nfeval, as:

nfeval
nfeval, = nfevals

(6)
where nfevalse is the maximum number of function evaluations
used for a sequential run of SSCOL, and co;s,, is the number of co-
operative iteration. It should be noted that previous works adopted
the CPU time of each thread as the time between information ex-
changes. However, due to different hardware specifications, a num-
ber of function evaluations will be able to provide an unbiased
comparison between different methods. Table 3 depicts a common
parameter setting for all SSCOL threads.

In Table 3, ndiverse, jumping rate J;, and local search are set
with the default setting as in previous work (Remli et al., 2017).
Meanwhile, the value for RefSet size is much lower (dim_refset = 10)
than in the previous work (dim_refset=36). This value was ob-
tained after trial and error was performed.

Oiter

4.3. Control parameters for each thread

Instead of setting the same control parameters for all threads,
each thread could be set with specific parameters which would re-
sult in different performance and search characteristics. This differ-
ent parameter setting could alter the search processes due to the
random nature of SSCOL method. In this study, the following pa-
rameter could be set with a different value for each balance and
local.n2 thread. Table 4 depicts the control parameters and their
descriptions for each thread in CeSSOL.

Table 5 demonstrates the value of parameter settings for each
thread. These parameters were set after several initial runs (trial
and error) have been performed. The parameter settings for SSCOL
influence its performance in solving optimization and parameter
estimation problems. Since the fitness landscape - either rugged
or smooth surface - of the problems are usually unknown (ex-
cept for large-scale global optimization benchmark functions), it
is essential to possess various settings for every thread. ‘Aggres-
sive’ threads have a small value of balance and local.n2 parameters,
which are suitable for a smooth surface. They focus on intensifica-
tion by launching local search frequently. ‘Conservative’ threads, on
the other hand, focus on searching broad area of search space and
spending more time on solution combination. In addition, ‘Conser-
vative’ threads have a large value of both parameters and are suit-
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Table 5 Table 7

Parameter settings for each thread (thread 1-8). Number of threads and cooperative iterations in CeSSOL.
Thread Balance Local.n2 Parameters Values
Thread 1 (SSCOL 1) 0 1 Number of threads n 8
Thread 2 (SSCOL 2) 0 4 Number of cooperative iteration coj, 5
Thread 3 (SSCOL 3) 0 3
Thread 4 (SSCOL 4) 0 10
Thread 5 (SSCOL 5) 0.25 20
Thread 6 (SSCOL 6) 0.25 30 iteration. From here, every SSCOL will use good and diverse solu-
Thread 7 (SSCOL 7) 0.25 50 tions as well as the random number as initial solutions before gen-
Thread 8 (SSCOL 8) 0.5 7

Note: These parameters are set after initial experiments have been performed. These
values gave the best performance for each thread.

Table 6
Algorithm 3 Pseudo-code of the proposed information exchange strategy based on
good and diverse solutions.

Input : All RefSet members for every thread

Output : Two RefSet members (good and diverse solutions)
1: Merge all RefSet obtained from every thread

2: Get the good solution in RefSet (x,;) using Eq. (7)

3: for all RefSet members do

4: Compute sum difference between good solution (x,;;) and all
RefSet (x;) using Eq. (9)

5: end for

6: Get maximum difference of solution Xpax using Eq. (8)

able for the rugged surface. The combination of ‘aggressive’ and
‘conservative’ threads is known to be beneficial for solving difficult
and challenging parameter estimation problems.

4.4. Information exchange strategy

Information exchange plays an important role in cooperative
search. Parallel run of several SSCOL threads produces the output
(RefSet) based on fixed number of function evaluations and these
RefSet were employed as information to be exchanged with other
threads. In this work, the information exchange is based on good
and diverse solutions along with random initial solutions. Two so-
lutions from merged RefSet were used as the initial solution for
the next cooperative iteration. The first element is the good solu-
tion value, which in this study, is the lowest value (), that is
defined as:

Xmin = min(RefSet) (7)

where RefSet contains a set of candidate solutions obtained from
several SSCOL threads. The second element is a diverse solution
value (Xmgax), which was selected based on the largest distance be-
tween a good solution and the rest of candidate solutions, defined
as:

Xmax = max(d) (8)
where
n
d=absy " Xmin — X; (9)
i1

abs is absolute value and x; is the remaining candidate solutions
in RefSet. Thus, good and diverse solutions were used to guide all
SSCOL threads for the remaining cooperative iterations. The algo-
rithm for information exchange proposed in this research has been
demonstrated in Table 6.

In Algorithm 3, information exchange occurs when all threads
have reached the number of function evaluations in each coopera-
tive iteration. Once all threads have completed the tasks, all RefSet
members from parallel threads are merged. Two solutions, which
is the best solution x,,;, and diverse solution x,,,;, from the merged
RefSet is then used as the initial solutions for the next cooperative

erating a RefSet. For instance, if the size of the initial solutions is
100, the size will be then increased to 102. Next, the quality of ini-
tial solutions is sorted before forming a small RefSet (e.g. 10). The
RefSet consists of high quality solutions which were selected from
the initial solutions. Thus, there is no increase in the size of the
RefSet for every thread. Recent work (Villaverde et al., 2012) em-
ployed all RefSet members that were obtained from parallel threads
as initial solutions. In addition, their information exchange strat-
egy was also based on best solutions found and the rest of the
RefSet. However, their method prevents the initial random num-
ber to be generated as initial solutions for the rest of the iteration.
The main drawback of their strategy is limited randomness, which
prevents the exploration of other diverse solutions. This study em-
ploys only two elements to be exchanged and combines them with
random values for each cooperative iteration. This strategy is ex-
pected to increase the diversity when combined with opposition-
based learning schemes which is introduced in SSCOL.

4.5. Number of threads and cooperative iteration in CeSSOL

In CeSSOL, the number of threads depends on the availability of
the physical multicore processors. This aspect influences the max-
imum number of parallel threads which could be launched. This
study uses 8 available threads, which is the maximum process-
ing power that the CPU can support. In the parallel environment,
when cluster nodes or HPC is used, the processing speed is ex-
pected to increase due to the availability of a large number of pro-
cessors. However, the synchronization of the threads by the pro-
posed method may decrease its scalability. Thus, the increase in
speed will not be directly proportional (linear) with the arbitrar-
ily large number of threads (processors). This could occur due to
two reasons. First is the communication overhead caused by syn-
chronization between threads. Some of the threads will complete
the search process earlier than other threads due to the different
parameter settings set for each thread. This will waste the CPU re-
sources, as it will be idle while waiting for other threads. Second is
the risk of overlapping by carrying out a similar search in a large
number of different threads. This occurs due to the relatively small
size of the RefSet (Villaverde et al., 2012). Hence, when the num-
ber of threads is very large, the resulting speed is smaller than
the increase in computational effort. Table 7 displays the parame-
ter values of the number of threads n and number of cooperative
iteration coj,,. After initial trial and error, the coy,, is set to 5, since
this value provides the best performance for solving large-scale pa-
rameter estimation problems. With coj,, defined, the number of
function evaluations nfevale, in Eq. (6) can be computed.

5. Experimental setup
5.1. Dataset

Two sets of large-scale kinetic model of biological systems were
used namely Chinese hamster ovary (CHO) cells and central car-
bon metabolism (CCM) in E. coli. Both data are standard bench-
mark data published to test the efficiency of parameter estimation
methods. CHO cells consist of 117 kinetic parameters, while CCM
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Table 8
Parameter setting in SSCOL and eSS(rerun).

Parameters Values

Number of diverse solutions (initial solutions) 1170 for CHO and 1160 for CCM

RefSet size 36
Local.n2 10
Balance 0.5

Reference: Remli et al. (2017).

cells consist of 116 parameters. These large number of kinetic pa-
rameters cause a serious challenge in terms of computation time
in parameter estimation methods (Villaverde et al., 2015).

5.2. Method comparison

The proposed CeSSOL method was executed 20 times as pro-
posed by the benchmark criteria. It is not easy to make a fair
comparison between the parallel method (CeSSOL) and sequential
methods. By means of the main goals of minimizing computation
time and improving results obtained in Remli et al. (2017), the pro-
posed method was compared to a previous study that used a se-
quential method including DE, PSO, eSS, SSCOL, and another modi-
fied eSS namely quasi-opposition enhanced scatter search (QeSS).
QeSS is another variant of eSS that modifies the diversification
method in the original eSS. The modification is performed by em-
ploying quasi-opposition based learning to create an initial solu-
tion using diversification generation method. Mainly, QeSS’s feature
consists of a multi-step diversification method to generate initial
random solutions and simultaneously produce quasi-opposite of
the initial solutions. Both solutions were compared and the fittest
one (in terms of lowest NSL value) was selected as a member of
RefSet.

In order to make a comparison with sequential methods, the
same total number of function evaluations was used, as in previ-
ous work. Here, the total number of function evaluations was di-
vided by a number of cooperative iterations. For example, in CHO
dataset, the total number of function evaluations of the sequential
method reported in previous work was 120,000. Thus, in every co-
operative thread, only 24,000 evaluations were performed. Total 5
cooperative iteration was then used to complete 120,000 evalua-
tions. This configuration has been mentioned in Table 3. Thus, the
total evaluations for the proposed method were only counted for
the threads that were having a good solution compared to other
threads in each iteration. This comparison has several disadvan-
tages including a different number of cores and different param-
eter settings used by the individual sequential and parallel meth-
ods, which might result in an unfair comparison. The parameter
setting of the sequential methods (eSS and SSCOL) has been shown
in Table 8 (Remli et al., 2017).

Therefore, in order to ensure that the best comparison was
achieved between these methods, the 8-SSCOL method was im-
plemented which uses 8 cores to run SSCOL in parallel without
cooperation. Each core in 8-SSCOL utilized different parameter set-
tings, as practiced by CeSSOL. The difference between CeSSOL and
8-SSCOL is the lack of cooperation among 8-SSCOL threads. The 8-
SSCOL method is a sequential method that runs in an embarrass-
ingly parallel fashion. The best result and fastest execution time
obtained from the 8 parallel non-cooperative threads of 8-SSCOL
was then used to be compared with the proposed method. In addi-
tion, the obtained results were compared with recent studies that
used original eSS (Villaverde et al., 2015) and saCeSS (Penas et al.,
2017). Dell Precision T1700 workstation with Intel Core i7 3.6 Ghz
was utilized to carry out the experiments. It consists of 4 physical
and 8 logical processors (multithreading technology). Thus, 8 log-

ical processors were used in parallel in this work using MATLAB
2015a and jPar library.

6. Result and discussion
6.1. Chinese Hamster Ovary (CHO)

In CHO data, the experimental results report the best, worst,
average NLS values and standard deviation over 20 runs, as de-
picted in Table 9. Overall, the table demonstrates that CeSSOL ob-
tained the best value of 32.696 compared to 8-SSCOL (331.39), SS-
COL (34.169), QeSS (35.184), and eSS (36.705). According to this ta-
ble, CeSSOL also recorded the most consistent and stable results,
where it obtained the lowest worst value (48.668) as well as low-
est average value (35.982), and lowest standard deviation (3.4732).
Based on the results, all methods except CeSSOL and 8-SSCOL have
large standard deviations, which indicates that CHO has high mul-
timodality. However, CeSSOL managed to overcome this challenge
by means of parallel and cooperative strategy. In addition, CeSSOL
has more consistent results for each run and produced the low-
est standard deviation (3.4732) compared to other methods. This is
due to the advantages of parallel and cooperative search that uti-
lizes the benefit of eight threads and exchange strategy mechanism
to explore global minimum.

Additional information for this comparison has been presented
in the convergence graph in Fig. 3. In order to perform a fair
comparison, same initial guess (randomly generated) was set for
all methods, resulting to the same initial NLS value. Based on
the figure, it can be noticed that CeSSOL has better convergence
speed, followed by 8-SSCOL, SSCOL, and QeSS. In this data, CeS-
SOL converges to the near-optimal solution when the evaluations
reached approximately 100,000. Meanwhile, SSCOL converges to
the near-optimal solution when its evaluations reached approxi-
mately 64,000. However, after 64,000 evaluations, SSCOL solution
stopped improving. The same case was recorded for QeSS, where it
converges very early, around 45,000 function evaluations with no
further improvement obtained until 120,000 evaluations.

In the proposed method, the best run (minimum value of NLS)
from each cooperative iteration was selected as the best conver-
gence and the value was used as the initial solution for the rest
of the iteration. Meanwhile, the largest NLS value was selected as
the diverse solution. Both solutions (diverse and good) were used
as the initial solution to modify systemic properties for all SSCOL
threads which could speed up the convergence rate as well.

In terms of computation time, Table 10 depicts the results for
average CPU time (seconds) and speedup ratio for the proposed
method compared to sequential 8-SSCOL. The table indicates that
CeSSOL obtained the highest speedup with 3007.2 seconds (ap-
proximately 50 minutes) average CPU time compared to 8-SSCOL
that took nearly two hours. The obtained results revealed that CeS-
SOL is able to reduce computational time compared to original eSS
and other methods (from hours to minutes) with speedup ratio of
2.31. This is due to the fact that CeSSOL uses a low number of Ref-
Set size and different parameter settings in multiple SSCOL threads
which leads to faster evaluation and requires less time to achieve a
satisfactory solution. Apart from that, the use of parallel execution
that utilized eight available SSCOL threads also resulted in faster
computation time.

Next, significance test using Wilcoxon signed ranks test, Fried-
man test, and nWins procedure were conducted to examine the
significant difference between CeSSOL with other methods as well
as ranking the methods globally. Table 11 demonstrates the results
of the pairwise Wilcoxon signed rank test based on NLS value over
20 runs. Overall, CeSSOL recorded significant result compared to
other methods. This is indicated by the lowest p-value obtained
(p-value < 0.05) with the level of significance o =0.05 when com-
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Table 9
Experimental results for CHO cells over 20 runs.

Method Nonlinear least squares (NLS) Standard deviation
Best value Worst value Average value
DE* 5.3075 ¢ 10* 1.7121  10° 9.2626 * 10* 3.3562 « 104
PSO* 2.2378 ¢ 102 6.5946 ¢ 10° 1.4175 * 10° 15119 ¢ 10°
eSS (rerun)’ 3.6705 ¢ 10! 2.0747 ¢ 102 9.5537 ¢ 10! 5.2290 ¢ 10!
QeSS* 3.5184 ¢ 10! 1.6583 * 102 8.0930 * 10! 4.8376 ¢ 10!
SScoL+ 3.4169 ¢ 10! 1.5499 ¢ 102 7.6727 * 10! 41455 ¢ 10!
8-SSCOL 3.3139 ¢ 10! 6.5189 ¢ 10? 4.0045 o 10! 74135 o 10°
CeSSOL* 3.2696 ¢ 10! 4.8668 * 10! 3.5982 ¢ 10! 34732 « 10°

* The proposed method in this work. Shaded cell represents the best overall result.
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* Results taken from Remli et al. (2017). ‘eSS (rerun)’ is the result from Remli et al. (2017)
(to differentiate from eSS result of the original publication).

1012 T T T T T
----- DE
.......... PSO
eSS(rerun)
1010 H QeSS .y
== SSCOL
8-SSCOL
_ CeSSOL
g
= 108} 1
5
©
>
c '1
2 L 6f b, i
g 10°F Y
s e 11 8
(= :.. D — - - - — - - -
'g :: memsEmsmemamamam=m— okl S -]
8 .l
& 10t
(o]
L _
10 I—_Ig
100 ! : ! : I
0 2 4 6 8 10 12

Number of function evaluations

x10%

Fig. 3. Convergence curves of best runs for CHO cells.

Table 10 Table 11
Computation time and speedup results for CHO cells over 20 runs. Results of the Wilcoxon signed ranks test for CHO based on NLS value.
Method Average CPU time (seconds) Speedup Ratio Comparison R+ R- p-value
8-SSCOL 6.9401 ¢ 103 1.00 CeSSOL vs DE 210 0 0.000089
CeSSOL* 3.0072 ¢ 10° 2.31 CeSSOL vs PSO 210 0 0.000089
- - CeSSOL vs eSS (rerun) 206 4 0.000163
* The proposed method in this work. Shaded cell represents the lowest computa- CeSSOL vs QeSS 209 1 0.000103
tion time with the highest speedup using 8 threads (processors) with cooperation. CeSSOL vs SSCOL 203 7 0.000254
CeSSOL vs 8-SSCOL 162 48 0.033340

pared to other methods via pairwise comparison. The null hypoth-
esis Hy, where there is no statistically significant difference be-
tween CeSSOL and other methods (DE, PSO, eSS (rerun), QeSS, 8-
SSCOL and SSCOL), was rejected and alternate hypothesis H;, which
is the opposite of Hy, was accepted.

Based on Table 11, the nWins procedure was conducted. The
best methods which produced larger R* than R~ values and p-
values smaller than 0.05 were granted +1. The losing methods (R~
larger than R*) with p-values smaller than 0.05 were granted —1.
Furthermore, the Friedman test was also used to rank all methods.
The result of this analysis has been presented in Table 12. Over-

Note: R* represents the sum of ranks (one method outperformed the others) and
R~ represents the sum of ranks for the opposite.

all, CeSSOL performed excellently compared to other methods with
Friedman and nWins values of 1.55 and 6, respectively.
Additionally, results obtained from this work were compared
with a recent study that used eSS (Villaverde et al.,, 2015) and
a recent publication on saCeSS (Penas et al., 2017) for the same
dataset, as shown in Table 13. It can be seen that CeSSOL ob-
tained a better objective function value J; (32.696) compared to
other methods. In terms of computational cost, specifically for
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Table 12

Global ranking of all methods for CHO.
Method Friedman ranking nWins
CeSSOL* 1.55 6
8-SSCOL 2.05 5
SSCOL 3.60 0
QeSS 3.65 0
eSS (rerun) 415 0
PSO 6.00 -5
DE 7.00 -6

* The proposed method in this work. The lowest mean rank value is the best
method and the highest mean rank value is the worst method based on Friedman
ranking. Shaded row represents the best overall result based on Friedman ranking
and nWins.

computational time, saCeSS has far better CPU time, where it
only consumes 343 seconds and obtains 55.000 J. Two factors
have contributed to the better computation time for the reported
works; first is the different stopping condition used and the sec-
ond is the different hardware platform utilized. In the first study
(Villaverde et al., 2015), the stopping condition of eSS is based on
CPU time, while saCeSS used value to reach (VIR) as its stopping
condition. Meanwhile, this study employed a number of function
evaluations as its stopping condition, which leads to different per-
formance behavior.

It should be noted that the metrics used for NLS J; and NRMSE
are different. Thus, it could lead to different estimation behav-
ior. For instance, from the CHO result presented in Table 9, it can
be seen that the lowest objective function J; value (32.696) is ob-
tained from the parameter estimated using CeSSOL. However, the
S NRMSE; of CeSSOL (2.8056) is slightly higher than XNRMSE; of
eSS (re-run) (2.7951), although J; from CeSSOL is lower (better)
than J; from eSS (rerun). Since the lowest J; is expected to produce
the lowest X NRMSE;, there are several possible explanations that
caused this contradiction. First, this data have un-identifiability is-
sue (Almquist et al., 2014; Raue et al., 2009; Raue, Karlsson, Sac-
comani, Jirstrand, & Timmer, 2014). Second, due to the nature of
these large-scale kinetic models (model with hundreds of kinetic
parameters), near-optimal solutions have resulted to over-fitting in
artificial noise. These issues resulted in different behavior for J; and
ENRMSE; in CHO.

Regarding the issue of un-identifiability, lack of identifiability
indicates that there are some possible model parameters with dif-
ferent values that could obtain the same agreement to the model
prediction in ODEs (model output) (Gabor et al., 2017). Thus, due
to this issue, it was observed that for the case of CHO, the lowest
Jr does not necessarily provide the lowest “NRMSE;. Identifiabil-

ity analysis of this model has been conducted and it was found
that some parameters had little influence on the model output
(Villaverde et al., 2015). In order to illustrate the identifiability is-
sue on CHO data, Fig. 4 illustrates the diagonal plots between nom-
inal parameters (model parameters that generated the data) and
near-optimal parameters which are obtained from CeSSOL. Plots in-
dicated that the difference between nominal and optimal values
was large. In other words, nominal and near-optimal values of pa-
rameters were quite different; however, they resulted in the same
prediction as in the diagonal plot shown in Fig. 5.

Regarding the overfitting issue, the lowest J; obtained by the
proposed method provided a better fit to the experimental data
(with artificial noise) rather than the one obtained with the nom-
inal parameters used to generate the data. This occurs due to the
presence of artificial noise in CHO, the near-optimal solutions do
not solely provide the best fits for ODEs, but they also try to pro-
duce a fit for artificial noise (which cannot be obtained from nom-
inal parameters) (Villaverde et al., 2015). Although the reported re-
sults in the literature are better for computational time (due to dif-
ferent stopping condition and platforms), in terms of solution qual-
ity (lowest value of nonlinear least squares), this work obtained
the lowest value compared to the results reported in Table 13.
Hence, it is expected that the proposed method will produce a bet-
ter model fit.

In order to assess the quality of the fitted models, normal-
ized root mean square error (NRMSE) was used. It is a standard
measure for goodness of model fit. The NRMSE values for each
metabolite have been tabulated in Table 14. Lowest NRMSE indi-
cates the best fit for each metabolite. Based on the table, the pro-
posed method in this study produced the lowest NRMSE (best fit)
for L-Lactate, as illustrated in Fig. 6.

6.2. Central Carbon Metabolism (CCM) of E. coli

The computational cost for CCM of E. coli is more expensive
compared to CHO. Due to the high complexity and high dimen-
sionality of this data, the process to evaluate NLS is costly where
it consumes long CPU time. Table 5 depicts the experimental re-
sults where it reports the best, worst, and average values obtained
as well as their standard deviation over 20 runs. Overall, the re-
sults revealed that the proposed method (CeSSOL) obtained excel-
lent results with the best minimum and average values of the ob-
jective function (208.58 and 229.77). Similar pattern was observed
in CHO data, as seen in the CCM data where the lowest NLS value
was obtained from CeSSOL, followed by SSCOL and QeSS. However,
in terms of consistency, there is not much difference in the stan-
dard deviation values of different runs. In addition, CeSSOL pro-

Table 13

Comparison of best results between the proposed method and previous works for CHO.
Method CPU time (s)  Jy Jrom ENRMSE;  SNRMSEnom
eSS 3.60000103 4.5718¢10! 3.906810! 2.8010 2.8273
SaCeSS 3.43000102 5.5000e10! Na Na Na
DE* 2.2049¢10% 5.3075 10*  3.9068¢10'  4.3453 2.8273
PSO* 3.98994103 2.2379 102 3.906810! 2.9410 2.8273
eSS (re-run)” 8.7175¢103 3.6705 10! 3.906810! 2.7951 2.8273
QeSS 6.8297¢10° 3.5514 10! 3.906810! 2.8226 2.8273
SSCOL* 6.711610% 3.4169¢10! 3.906810! 2.8048 2.8273
8-SSCOL 6.2303103 3.3139¢10! 3.906810! 2.8111 2.8273
CeSSOL* 2.9880103 3.269610! 3.906810! 2.8056 2.8273

* The proposed method in this research.eSS result is obtained from Villaverde et al. (2015),
while SaCeSS is obtained from Penas et al. (2017).

* Results taken from Remli et al. (2017).NRMSE = Normalized root-mean-square-error.The
best (minimum) number of function evaluations, the best (minimum) CPU time (s), the
best (minimum) objective function (nonlinear least squares) values J; and the best sum of
Y NRMSE; are indicated in shaded cells,J;,om= Objective function values obtained from nomi-
nal parameters ppom £ NRMSE;;m= Sum of NRMSE with nominal parameters.



M.A. Remli et al./Expert Systems With Applications 116 (2019) 131-146

141

104 p—

10" £

Near-optimal parameter values (log) from CeSSOL

EEEETA Y 'a'a'a'a Ve WEETH

ol

ol

100 £ 5

o 1

107" E 08 3
10_2? vl PR | Ll N |
1072 107" 100 10° 102

=
o
w

Nominal parameter values (log) that generated the data

Fig. 4. Difference between the nominal parameters (log) and near-optimal parameters (log) in CHO.

106 oo oo |

T

T T

T

102

T

10"

' 4

T

()

&

I L

100

Predicted states (Near-optimal parameters from CeSSOL)

T

covanl ol

Lol Lol Lol Lol Lol Lo

Lol

| ol vl P

107"

107" 100 10" 102

108 10% 105 108

Measured states (log) from nominal parameters

Fig. 5. Difference between the measured states with nominal parameters and predicted states with near-optimal parameters in CHO.

duced the lowest standard deviation (10.150), followed by SSCOL
(11.891), and QeSS (17.463). This indicated that for parameter esti-
mation, CCM data is less challenging compared to CHO, where all
the competitive methods (except DE) were able to find satisfactory
solutions.

The convergence curve of the best run for this data has been
shown in Fig. 7. Except for DE, all methods produced a high speed
of convergence in the early stage of evaluation. However, after
70,000 evaluations, CeSSOL produced the best objective value fol-

lowed by 8-SSCOL, SSCOL, QeSS, eSS (rerun), PSO, and DE. In view
of computation time, Table 16 represents the average computation
time and speedup ratio for CCM data. Similar to the previous data,
CeSSOL was able to reduce the computation time, taking nearly
two and half hours compared to 8-SSCOL which consumed nearly
six hours. This result indicates that CeSSOL was able to obtain bet-
ter average CPU time compared to other methods.

Based on the results of the nonparametric tests presented in
Tables 17 and 18, the proposed method yields to significant im-
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Table 14
NRMSE values for all parameters estimated in CHO.
Metabolite NRMSE value
DE* PSSO eSS (rerun)? QeSS SSCOL'! 8-SSCOL  CeSSOL-
Product Protein 0.1625 0.13132 0.1318 0.13138 0.13176 0.1318 0.13172
L-Methionine 0.27479 0.2587 0.25385 0.25372 0.25325 0.2543 0.25437
L-Leucine 0.1799 0.18079 0.181 0.18079 0.18096 0.1810 0.18099
L-Lactate 0.051246 0.048955 0.046447 0.046562 0.046397 0.0464 0.046315
beta-D-Glucose 0.14469 0.14636 0.14412 0.14413 0.14432 0.1446 0.14466
L-Aspartate 0.32515 0.089176 0.086051 0.086009 0.08528 0.0851 0.08522
L-Malate 0.28523 0.24388 0.24943 0.24874 0.24939 0.2495 0.2495
Pyruvate 0.24223 0.25596 0.2563 0.25805 0.25743 0.2579 0.25751
Oxaloacetate 0.52836 0.54308 0.39091 0.4166 0.39758 0.4035 0.39919
ATP (Cytosol) 0.27957 0.28514 0.2851 0.28525 0.28514 0.2851 0.28518
ATP (Mitochondria) 0.42778 0.25551 0.25054 0.25478 0.25342 0.2527 0.25466
ADP (Mitochondria) 11554 0.24221 0.25909 0.26445 0.26273 0.2620 0.26208
ADP (Cytosol) 0.2884 0.25988 0.26047 0.25215 0.25716 0.2572 0.2542
* The proposed method in this research. Shaded cells represent the lowest (best) NRMSE values for each metabolite.
+ Results taken from Remli et al. (2017).
Table 15
Experimental results for CCM of E. coli over 20 runs.
Method Objective function (Nonlinear least squares) Standard deviation
Best value Worst value Average value

DE* 41203 o 102 6.1407 * 102 5.1741 e 102 4.5680 ¢ 10!

PSO* 2.3787 ¢ 102 41090 ¢ 10° 1.1403 * 10° 1.5838 ¢ 10°

eSS (rerun) 2.2918 * 10° 2.7007 ¢ 10? 2.4843 o 10? 1.0465 ¢ 10!

QeSS 2.3129 * 102 2.9771 ¢ 10? 2.5188 ¢ 10° 1.7463 o 10!

SSCOL* 2.0992 ¢ 10° 2.5642 ¢ 10° 2.4107 o 102 1.1891 * 10!

8-SSCOL 2.2980 ¢ 10° 2.4541 e 10? 2.3688 * 10? 5.6121 ¢ 10°

CeSSOL 2.0858 ¢ 10?2 2.4555 ¢ 10° 2.2977 ¢ 10? 1.0150 ¢ 10!

* The proposed method in this research. Shaded cell represents the best overall result.

+ Results adopted from Remli et al. (2017).

Table 16 provements over other methods. This was demonstrated by the re-

Computation time and speedup results for CCM over 20 runs.

Method Average CPU time (seconds) Speedup Ratio
8-SSCOL 2.1071 » 10* 1.00
CeSSOL' 8.5844 ¢ 10° 2.45

* The proposed method in this research. Shaded cell represents the lowest com-
putation times with the highest speedup using 8 threads (processors).

Table 17

Results of the Wilcoxon signed ranks test for CCM based on NLS value.
Comparison R+ R- p-value
CeSSOL vs DE 210 0 0.000089
CeSSOL vs PSO 209 1 0.000103
CeSSOL vs eSS (rerun) 209 1 0.000103
CeSSOL vs QeSS 203 7 0.000254
CeSSOL vs SSCOL 184 26 0.003185
CeSSOL vs 8-SSCOL 182 28 0.004045

Note: R* represents the sum of ranks (one method outperformed the others) and
R~ represents the sum of ranks for the opposite.

Table 18

Global ranking of all methods for CCM.
Method Friedman ranking nWins
CeSSOL" 1.55 6
8-SSCOL 2.50 4
SSCOL 3.40 1
QeSS 4.20 0
eSS (rerun) 4.25 -1
PSO 535 -5
DE 6.75 -5

* The proposed method in this work. The lowest mean rank value is the best
method and the highest mean rank value is the worst method, based on Friedman
ranking. Shaded row represents the best overall result based on Friedman ranking
and nWins.

sult of Wilcoxon pairwise comparison that recorded p-value lower
than 0.05. On the other hand, the proposed method also ranked
first in terms of Friedman ranking and nWins procedure. By means
of a parallel strategy, the proposed method could improve parame-
ter estimation result in terms of its ability to minimize NLS values,
convergence speed, and computation time.

Table 19 demonstrates a comparison between this study and
two other studies which utilized eSS (Villaverde et al., 2015) and
saCeSS (Penas et al., 2017). The table indicates that the proposed
method in this study produced superior results in terms of the
lower objective function value J; and lower value of XNRMSE. In
terms of CPU time, saCeSS obtained the lowest time (1694 sec-
onds). From the comparison, it can be noticed that this study ob-
tained the lowest X NRMSE; value compared to the benchmark and
original ¥ NRMSE.y, indicating that the parameters estimated by
this study provides the best possible fit to the real experimental
data. The NRMSE values for each metabolite have been shown in
Table 20, where the lowest NRMSE indicates the best fit for each
metabolite. Based on the table, the proposed method in this study
produced the lowest NRMSE for GAP. Specifically, model parameter
values obtained from CeSSOL produced the best fit for the GAP in
CCM, as shown in Fig. 8. On the other hand, parameter values ob-
tained from SSCOL produced the best fit for PEP, G6P, and GLCex.
Other than that, the lowest NRMSE for other metabolites were ob-
tained by other methods. Values of kinetic parameters obtained
from all methods employed in this experiment including DE, PSO,
eSS (rerun), QeSS, SSCOL, 8-SSCOL, and CeSSOL have been provided
in supplementary material.

It was interesting to observe that the proposed method does
not yield the lowest (best) values for all metabolites in CHO and
CCM data. In some metabolites, parameters estimated from other
methods provided slightly better NRMSE values, except for DE
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Fig. 6. Fitted model of L-Lactate metabolite. Experimental data with artificial noise is shown as bars. The fittest model was obtained from CeSSOL.
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Fig. 7. Convergence curves of best run for CCM of E. coli.

in which it resulted to poor fit in most of the metabolites. Ac-
cordingly, it is believed that the minimum value of the objective
function J; does not guarantee the lowest NRMSE for all metabo-
lites. This indicates that although the minimum objective func-
tion values were obtained by CeSSOL, it did not produce the low-
est NRMSE for all metabolites for both data (CHO and CCM) com-

pared to other methods. This situation occurs due to the higher
order interrelationship between kinetic parameters in ODEs and
interdependency between metabolites (state variables). Thus, due
to the stochastic (random) nature of the problems and several
metabolites (13 in CHO and 9 in CCM) considered for estimation,
some methods may produce the lowest NRMSE values for partic-
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Table 19

Comparison of best results between the proposed method and previous works for CCM of E. coli.
Method CPU time (s) Jr Jex S NRMSE; S NRMSEex
eSS 1.0800e10* 2.3390010? 3.108710* 2.8010 3.6065
saCeSS 1.6940010° 2.5000010° Na Na Na
DE* 5.2229¢10* 4.1203 10? 3.108710* 3.2341 3.6065
PSO* 2.3248¢10* 2.3786 102 3.108710* 2.6138 3.6065
eSS (re-run)*™ 4.3591010* 2.2918 10% 3.108710% 2.4349 3.6065
QeSS* 2.777010% 2.3129 102 3.1087¢10* 2.4677 3.6065
SSCOL* 2.7605¢10% 2.0992¢10? 3.108710* 2.3879 3.6065
8-SSCOL 24271104 2.2980e10? 3.108710* 24131 3.6065
CeSSOL* 1.3996010* 2.0858¢10? 3.1087¢10* 2.3804 3.6065

Note: eSS result is obtained from Villaverde et al. (2015), while saCeSS obtained from Penas et al. (2017).
* Results taken from Remli et al. (2017).The best (minimum) number of function evaluations, the best (mini-
mum) CPU time (s), the best (minimum) objective function (nonlinear least squares) values J; and the best 3NRMSE;
are indicated in shaded cellsJ.x= Objective function values obtained from original the parameters reported in
publication. X NRMSEe= Sum of normalized root-mean-square-error with original parameters reported in publication.

Table 20

NRMSE values of all metabolites in CCM of E. coli.

Metabolite NRSME value

DE* PSO* eSS (rerun)’ QeSS SSCOL* 8-SSCOL CeSSOL*
PEP 0.6446 0.4430 0.4162 0.4155 0.3714 0.4080 0.4031
G6P 0.3124 0.1489 0.1388 0.1284 0.1234 0.1419 0.1276
PYR 0.3323 0.2440 0.2521 0.2555 0.2631 0.2547 0.2597
F6P 0.1701 0.2072 0.1823 0.1890 0.1780 0.1783 0.1789
ex. GLC 0.1912 0.2045 0.1906 0.1904 0.1836 0.1865 0.1854
GLP 0.2112 0.2439 0.1751 0.1868 0.1976 0.1634 0.1924
6PG 0.2698 0.1667 0.1058 0.1215 0.1187 0.0961 0.1097
FDP 0.2951 0.2104 0.2496 0.2464 0.2391 0.2583 0.2402
GAP 0.8073 0.7453 0.7244 0.7342 0.7129 0.7260 0.6835

* The proposed method in this research. Shaded cells represent the lowest (best) NRMSE value for each metabolite.

+ Results taken from Remli et al. (2017).
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Fig. 8. Fitted model of GAP metabolite. The lowest NRMSE is obtained from CeSSOL.

ular metabolites, although they do not produce lowest objective
functions Jr which contain the sum of NLS values for all metabo-
lites.

The cooperative method proposed in this study aims to reduce
the computation time as well as maintaining the minimum (best)

solution quality. Based on the obtained NLS values, CeSSOL has
managed to produce the lowest value compared to other methods
including eSS and eSSCOL for both CHO and CCM data. The advan-
tages of information sharing by the proposed method have resulted
in improved systemic properties in all sequential CeSSOL threads,
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and at the same time, improved the values of the objective func-
tion and recorded faster computation time. Providing high-quality
kinetic parameter values to be used to guide the search process
in all parallel threads by using a combination of opposition-based
learning schemes is the important factor that contributed to the
lowest (improved) NRMSE for L-Lactate (in CHO cells) and GAP (in
CCM). The method is able to explore different regions of parameter
space based on the proposed cooperative mechanism that shares
the best value and diverse (worst) value among eSSCOL threads.
The proposed method provides a better alternative to search for
unknown parameter values in a large-scale kinetic model of bi-
ological systems. Based on the experimental outcomes, the pa-
rameter values obtained from the proposed methods produced the
best-fitted model prediction of two biological models which have
been widely utilized in industrial biotechnology research. The fit-
ted model that contains metabolites concentrations could be used
in simulation and prediction of biological systems. The usage of
these models will save both time and resources.

7. Conclusion

Preparing a predictive model of highly nonlinear metabolic pro-
cesses of microorganism cells is known to be challenging and time-
consuming. The challenging issue that arises in such model build-
ing is parameter estimation that involves the process of searching
for near-optimal values of kinetic parameters. The values of param-
eters influence the accuracy of model prediction, where they de-
termine the distance between model prediction and experimental
data. This issue received great attention in both systems biology
and metabolic engineering fields, especially involving large-scale
models. Metaheuristic methods based on sequential global opti-
mization are suitable candidates to surmount this issue. However,
their main drawback is in terms of performance deterioration due
to high computational cost (in terms of function evaluations and
CPU time) when solving high-dimensional data.

In this study, an improved cooperative metaheuristic method
with information exchange strategy was proposed in order to solve
the stated issues. The proposed method was based on parallel and
cooperative search. Parallel metaheuristic method based on scatter
search with combined opposition-based learning (SSCOL) was exe-
cuted in multicores CPU on a single machine. Each thread utilized
a small number of RefSet to reduce the computational effort, which
could speed up the search process. It was observed that the pro-
posed method was able to reduce computation time by two times,
compared to the sequential method. Moreover, the obtained results
revealed that the method does not solely result in faster computa-
tion time but is also efficient in discovering near-optimal solutions.
This is due to the fact that the proposed information exchange
strategy enhances the systemic properties and search pattern in
each SSCOL thread. The exchange strategy was based on good and
diverse solutions obtained from previously known solutions. These
two solutions with the combination of opposition-based learnings
schemes were used to guide the overall minimization process for
all cooperative threads. However, the main drawback of the pro-
posed method is its inefficient resource (CPU) usage since not all
threads were used to obtain the good and diverse solutions (only
two threads out of eight were used in information exchange). Fur-
thermore, the information exchange in this method leads to an un-
balanced scenario where the threads have to wait for all threads
to finish their tasks before new tasks can be launched, which de-
creased the threads’ scalability. As future work, further study will
be performed on the following:

(i) Additional information exchange strategies will be proposed
and analyzed. Current work solely utilized two solutions
(best and diverse) among the threads to be imported as ini-

tial solutions. It led to the waste of CPU usage, while some
of the other threads did not produce the best and diverse
solutions. Therefore, the performance and systemic behavior
of the proposed method is expected to be influenced when
the best and diverse solutions for each thread is imported as
an initial solution in information exchange strategy.

(ii) Implementation of cooperative search using parallel dis-
tributed computing including a graphic processing unit
(GPU), high-performance computing (HPC) and computer
clusters (at least local cluster) are the promising direction
in this research. This can be beneficial if the data is huge
(thousands of kinetic parameters), especially if it involves a
full genome metabolic model.

(iii) Prior to performing parameter estimation in large-scale
models, it is crucial to conduct an identifiability analysis of
model parameters. This could be performed using several
statistical techniques such as the Fisher Information Matrix
in order to rank the kinetic parameters based on their sen-
sitivity. Identifiability problem occurs when the portion of
kinetic parameters has little influence on the model output.
This analysis is important in order to group the parameters
based on sensitivity ranks and could reduce the model com-
plexity.

(iv) Additionally, the robustness of the proposed method can be
investigated by applying the method in other challenging
and computational expensive domains such as in large-scale
global optimization (LSGO) problem.

Acknowledgment

We would like to thank the Malaysian Ministry of Higher
Education and Universiti Teknologi Malaysia for their support
via the Fundamental Research Grant Scheme (grant number:
R.J130000.7828.4F886) and Flagship Grant Scheme (grant number:
Q.J130000.2428.03G57).

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.eswa.2018.09.020.

References

Ahn, W. S., & Antoniewicz, M. R. (2012). Towards dynamic metabolic flux analysis in
CHO cell cultures. Biotechnology Journal, 7(1), 61-74. http://doi.org/10.1002/biot.
201100052.

Alba, E., & Hoboken, N. J. (2005). Parallel metaheuristics: a new class of algorithms
(1st ed). John Wiley and Sons http://doi.org/10.1002/0471739383.

Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., & Jirstrand, M. (2014). Ki-
netic models in industrial biotechnology - Improving cell factory performance.
Metabolic Engineering, 24, 38-60. http://doi.org/10.1016/j.ymben.2014.03.007.

Billa, T., Horton, S. R., Sahasrabudhe, M., Saravanan, C., Hou, Z., Agarwal, P, et al.
(2017). Enhancing the value of detailed kinetic models through the development
of interrogative software applications. Computers and Chemical Engineering, 106,
512-528. http://doi.org/10.1016/j.compchemeng.2017.07.009.

Chong, C. K, Mohamad, M. S., Deris, S., Shamsir, M. S., Chai, L. E, &
Choon, Y. W. (2014). Parameter estimation by using an improved bee memory
differential evolution algorithm (IBMDE) to simulate biochemical pathways. Cur-
rent Bioinformatics, 9(1), 65-75. http://doi.org/10.2174/15748936113080990007.

Crainic, T. G., & Gendreau, M. (2002). Cooperative parallel tabu search for capaci-
tated network design. Journal of Heuristics, 8(6), 601-627. http://doi.org/10.1023/
A:1020325926188.

Crainic, T. G., Gendreau, M., Hansen, P., & Mladenovi¢, N. (2004). Cooperative parallel
variable neighborhood search for the p-median. Journal of Heuristics, 10(3), 293-
314. http://doi.org/10.1023/B:HEUR.0000026897.40171.1a.

Crainic, T. G., & Toulouse, M. (2010). Parallel strategies for meta-heuristics. In
F. Glover, & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 475-513).
Boston, MA.: Springer. http://doi.org/10.1007/0-306-48056-5_17.

Cruz, C., & Pelta, D. (2009). Soft computing and cooperative strategies for optimiza-
tion. Applied Soft Computing Journal, 9(1), 30-38. http://doi.org/10.1016/j.asoc.
2007.12.007.

Cvijovic, M., Bordel, S., & Nielsen, J. (2011). Mathematical models of cell factories:
Moving towards the core of industrial biotechnology. Microbial Biotechnology,
4(5), 572-584. http://doi.org/10.1111/j.1751-7915.2010.00233 x.


https://doi.org/10.1016/j.eswa.2018.09.020
http://doi.org/10.1002/biot.201100052
http://doi.org/10.1002/0471739383
http://doi.org/10.1016/j.ymben.2014.03.007
http://doi.org/10.1016/j.compchemeng.2017.07.009
http://doi.org/10.2174/15748936113080990007
http://doi.org/10.1023/A:1020325926188
http://doi.org/10.1023/B:HEUR.0000026897.40171.1a
http://doi.org/10.1007/0-306-48056-5_17
http://doi.org/10.1016/j.asoc.2007.12.007
http://doi.org/10.1111/j.1751-7915.2010.00233.x

146 M.A. Remli et al./Expert Systems With Applications 116 (2019) 131-146

Dobson, P. D., Smallbone, K., Jameson, D., Simeonidis, E., Lanthaler, K., Pir, P,
et al. (2010). Further developments towards a genome-scale metabolic model
of yeast. BMC Systems Biology, 4, 145. http://doi.org/10.1186/1752-0509-4-145.

Egea, J. A., & Balsa-Canto, E. (2009). Dynamic optimization of nonlinear processes
with an enhanced scatter search method. Industrial & Engineering Chemical Re-
search, 48(9), 4388-4401.

Egea, ]. A., Henriques, D., Cokelaer, T., Villaverde, A. F., MacNamara, A., Danciu, D.-P,
et al. (2014). MEIGO: An open-source software suite based on metaheuristics for
global optimization in systems biology and bioinformatics. BMC Bioinformatics,
15, 136. http://doi.org/10.1186/1471-2105-15-136.

Egea, ]. A, Marti, R, & Banga, J. R. (2010). An evolutionary method for complex-
process optimization. Computers and Operations Research, 37(2), 315-324. http:
//doi.org/10.1016/j.cor.2009.05.003.

El-Abd, M., & Kamel, M. (2005). A taxonomy of cooperative search algorithms. In
M. J. Blesa, C. Blum, A. Roli, & M. Sampels (Eds.). In Hybrid metaheuristics: 3636
(pp. 32-41). BerlinHeidelberg: Springer. http://doi.org/10.1007/11546245_4.

Gabor, A., Villaverde, A. F, & Banga, J. R. (2017). Parameter identifiability analysis
and visualization in large-scale kinetic models of biosystems. BMC Systems Biol-
ogy, 11(1), 54. http://doi.org/10.1186/s12918-017-0428-y.

Gottu Mukkula, A. R., & Paulen, R. (2017). Model-based design of optimal experi-
ments for nonlinear systems in the context of guaranteed parameter estima-
tion. Computers & Chemical Engineering, 99, 198-213. http://doi.org/10.1016/j.
compchemeng.2017.01.029.

Jahan, N.,, Maeda, K, Matsuoka, Y., Sugimoto, Y., & Kurata, H. (2016). Develop-
ment of an accurate kinetic model for the central carbon metabolism of Es-
cherichia coli. Microbial Cell Factories, 15(1), 112-130. http://doi.org/10.1186/
$12934-016-0511-x.

Karbowski, A., Majchrowski, M., Trojanek, P., Pokorski, T., & Zatuga, D. (2015). jPar
- a simple, free and lightweight tool for parallelizing Matlab calculations on
multicores and in clusters. In Federated conference on computer science and in-
formation systems: 6 (pp. 91-96). PTI. http://doi.org/10.15439/2015F233 .

Karr, J. R., Takahashi, K., & Funahashi, A. (2015). The principles of whole-cell model-
ing. Current Opinion in Microbiology, 27, 18-24. http://doi.org/10.1016/j.mib.2015.
06.004.

Li, G., & Wang, Q. (2014). A cooperative harmony search algorithm for function opti-
mization. Mathematical Problems in Engineering, 2014(1), 1-13. http://doi.org/10.
1155/2014/587820.

Li, P, & Vu, Q. D. (2013). Identification of parameter correlations for parameter esti-
mation in dynamic biological models. BMC Systems Biology, 7. http://doi.org/10.
1186/1752-0509-7-91.

Macklin, D. N., Ruggero, N. A.,, & Covert, M. W. (2014). The future of whole-cell
modeling. Current Opinion in Biotechnology, 28, 111-115. http://doi.org/10.1016/
j.copbio.2014.01.012.

Martin, S., Ouelhadj, D., Smet, P,, Vanden Berghe, G., & Ozcan, E. (2013). Cooperative
search for fair nurse rosters. Expert Systems with Applications, 40(16), 6674-6683.
http://doi.org/10.1016/j.eswa.2013.06.019.

Miskovic, L., Tokic, M., Fengos, G., & Hatzimanikatis, V. (2015). Rites of passage: Re-
quirements and standards for building kinetic models of metabolic phenotypes.
Current Opinion in Biotechnology, 36, 146-153. http://doi.org/10.1016/j.copbio.
2015.08.019.

Mohd Zain, M. Z., Kanesan, J., Kendall, G., & Chuah, J. H. (2018). Optimization of fed-
batch fermentation processes using the backtracking search algorithm. Expert
Systems with Applications, 91, 286-297. http://doi.org/10.1016/j.eswa.2017.07.034.

Moles, C. G., Mendes, P, & Banga, J. R. (2003). Parameter estimation in biochemi-
cal pathways: A comparison of global optimization methods. Genome Research,
13(11), 2467-2474. http://doi.org/10.1101/gr.1262503.

Nedjah, N., Calazan, R., de, M., Mourelle, L., de, M., & Wang, C. (2016). Parallel im-
plementations of the cooperative particle swarm optimization on many-core
and multi-core architectures. International Journal of Parallel Programming, 44(6),
1173-1199. http://doi.org/10.1007/s10766-015-0368-3.

Ngo, T. T, Sadollah, A, & Kim, ]J. H. (2016). A cooperative particle swarm opti-
mizer with stochastic movements for computationally expensive numerical op-
timization problems. Journal of Computational Science, 13, 68-82. http://doi.org/
10.1016/j.jocs.2016.01.004.

Oh, E., Lu, M,, Park, C., Oh, H. Bin, Lee, S. Y., & Lee, J. (2011). Dynamic modeling of
lactic acid fermentation metabolism with Lactococcus lactis. Journal of Microbi-
ology and Biotechnology, 21(2), 162-169. http://doi.org/10.4014/jmb.1007.07066.

Park, J. H., Kim, T. Y., Lee, K. H., & Lee, S. Y. (2011). Fed-batch culture of Escherichia
coli for L-valine production based on in silico flux response analysis. Biotechnol-
ogy and Bioengineering, 108(4), 934-946. http://doi.org/10.1002/bit.22995.

Penas, D. R, Banga, J. R,, Gonzalez, P, & Doallo, R. (2015). Enhanced parallel differen-
tial evolution algorithm for problems in computational systems biology. Applied
Soft Computing, 33, 86-99. http://doi.org/10.1016/j.as0c.2015.04.025.

Penas, D. R., Gonzalez, P, & Egea, ]J. A. (2017). Parameter estimation in large-scale
systems biology models: A parallel and self-adaptive cooperative strategy. BMC
Bioinformatics, 18, 52. http://doi.org/10.1186/s12859-016-1452-4.

Raue, A., Karlsson, J., Saccomani, M. P, Jirstrand, M., & Timmer, ]. (2014). Compar-
ison of approaches for parameter identifiability analysis of biological systems.
Bioinformatics, 30(10), 1440-1448. http://doi.org/10.1093/bioinformatics/btu006.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmiiller, U., et al.
(2009). Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15),
1923-1929. http://doi.org/10.1093/bioinformatics/btp358.

Remli, M. A, Deris, S., Mohamad, M. S., Omatu, S., & Corchado, ]. M. (2017a). An
enhanced scatter search with combined opposition-based learning for parame-
ter estimation in large-scale kinetic models of biochemical systems. Engineering
Applications of Artificial Intelligence, 62, 164-180. April http://doi.org/10.1016/j.
engappai.2017.04.004 .

Remli, M. A., Mohamad, M. S., Deris, S., Napis, S., Sinnott, R., & Sjaugi, M. F. (2017b).
Metaheuristic optimization for parameter estimation in kinetic models of bio-
logical systems - recent development and future direction. Current Bioinformat-
ics, 12(00), 286-295. http://doi.org/10.2174/15748936116661610181428.

Riahi, V., Khorramizadeh, M., Hakim Newton, M. A., & Sattar, A. (2017). Scatter
search for mixed blocking flowshop scheduling. Expert Systems with Applications,
79, 20-32. http://doi.org/10.1016/j.eswa.2017.02.027.

Robles-Rodriguez, C. E., Bideaux, C., Guillouet, S. E., Gorret, N., Cescut, J., Uribelar-
rea, J. L, et al. (2017). Dynamic metabolic modeling of lipid accumulation and
citric acid production by Yarrowia lipolytica. Computers and Chemical Engineer-
ing, 100, 139-152. http://doi.org/10.1016/j.compchemeng.2017.02.013.

Saa, P. A, & Nielsen, L. K. (2016). Construction of feasible and accurate kinetic
models of metabolism: A Bayesian approach. Scientific Reports, 6(1), 29635.
http://doi.org/10.1038/srep29635.

Smallbone, K., & Mendes, P. (2013). Large-scale metabolic models: From recon-
struction to differential equations. Industrial Biotechnology, 9(4), 179-184. http:
//doi.org/10.1089/ind.2013.0003.

Talbi, E. G., & Bachelet, V. (2006). COSEARCH: A parallel cooperative metaheuristic.
Journal of Mathematical Modelling and Algorithms, 5(1), 5-22. http://doi.org/10.
1007/s10852-005-9029-7.

Villaverde, A. F, Egea, J. A,, & Banga, J. R. (2012). A cooperative strategy for param-
eter estimation in large scale systems biology models. BMC Systems Biology, 6,
75.

Villaverde, A. F, Henriques, D., Smallbone, K., Bongard, S., Schmid, J., Cicin-Sain, D.,
et al. (2015). BioPreDyn-bench: A suite of benchmark problems for dynamic
modelling in systems biology. BMC Systems Biology, 9, 8. http://doi.org/10.1186/
$12918-015-0144-4.

Zuiiga, E. C. T, Lopez Cruz, 1. L., & Garcia, A. R. (2014). Parameter estimation for
crop growth model using evolutionary and bio-inspired algorithms. Applied Soft
Computing, 23, 474-482. http://doi.org/10.1016/j.as0c.2014.06.023.


http://doi.org/10.1186/1752-0509-4-145
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0012
http://doi.org/10.1186/1471-2105-15-136
http://doi.org/10.1016/j.cor.2009.05.003
http://doi.org/10.1007/11546245_4
http://doi.org/10.1186/s12918-017-0428-y
http://doi.org/10.1016/j.compchemeng.2017.01.029
http://doi.org/10.1186/s12934-016-0511-x
http://doi.org/10.15439/2015F233
http://doi.org/10.1016/j.mib.2015.06.004
http://doi.org/10.1155/2014/587820
http://doi.org/10.1186/1752-0509-7-91
http://doi.org/10.1016/j.copbio.2014.01.012
http://doi.org/10.1016/j.eswa.2013.06.019
http://doi.org/10.1016/j.copbio.2015.08.019
http://doi.org/10.1016/j.eswa.2017.07.034
http://doi.org/10.1101/gr.1262503
http://doi.org/10.1007/s10766-015-0368-3
http://doi.org/10.1016/j.jocs.2016.01.004
http://doi.org/10.4014/jmb.1007.07066
http://doi.org/10.1002/bit.22995
http://doi.org/10.1016/j.asoc.2015.04.025
http://doi.org/10.1186/s12859-016-1452-4
http://doi.org/10.1093/bioinformatics/btu006
http://doi.org/10.1093/bioinformatics/btp358
http://doi.org/10.1016/j.engappai.2017.04.004
http://doi.org/10.2174/15748936116661610181428
http://doi.org/10.1016/j.eswa.2017.02.027
http://doi.org/10.1016/j.compchemeng.2017.02.013
http://doi.org/10.1038/srep29635
http://doi.org/10.1089/ind.2013.0003
http://doi.org/10.1007/s10852-005-9029-7
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30597-9/sbref0043
http://doi.org/10.1186/s12918-015-0144-4
http://doi.org/10.1016/j.asoc.2014.06.023

	Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems
	1 Introduction
	2 Problem formulation
	3 Enhanced scatter search with combined opposition-based learning (SSCOL)
	4 Cooperative enhanced scatter search with opposition-based learning (the proposed method)
	4.1 Schematic representation of CeSSOL
	4.2 Common parameters for all threads
	4.3 Control parameters for each thread
	4.4 Information exchange strategy
	4.5 Number of threads and cooperative iteration in CeSSOL

	5 Experimental setup
	5.1 Dataset
	5.2 Method comparison

	6 Result and discussion
	6.1 Chinese Hamster Ovary (CHO)
	6.2 Central Carbon Metabolism (CCM) of E. coli

	7 Conclusion
	 Acknowledgment
	 Supplementary materials
	 References


