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a b s t r a c t 

Industrial bioprocesses development nowadays is concerned with producing chemicals using yeast, bac- 

teria and therapeutic proteins in mammalian cells. This involves the utilization of microorganism cells as 

factories and re-engineering them in silico . The tools that could facilitate this process are known as the ki- 

netic models. Kinetic models of cellular metabolism are important in assisting researchers to understand 

the rational design of biological systems, predicting metabolites production, and improving bio-products 

development. However, the most challenging task in model development is parameter estimation, which 

is the process of identifying an unknown value of model parameters which provides the best fit between 

the model output and a set of experimental data. Due to the increased complexity and high dimension- 

ality of the models, which are extremely nonlinear and contain large numbers of kinetic parameters, 

parameter estimation is known to be difficult and time-consuming. This study proposes a cooperative 

enhanced scatter search with opposition-based learning schemes (CeSSOL) for parameter estimation in 

large-scale biology models. The method was executed in parallel with the proposed cooperative mecha- 

nism in order to exchange information (kinetic parameters) between individual threads. Each thread con- 

sists of different parameters settings that enhance the systemic properties in obtaining the global min- 

imum. The performance of the proposed method was assessed against two large-scale microorganisms 

models using mammalian and bacteria cells. The results revealed that the proposed method recorded 

faster computation time compared to other methods. The study has also demonstrated that the proposed 

method can be used to provide more accurate and faster estimation of kinetic models, indicating the 

potential benefits of utilizing this method for expert systems of industrial biotechnology. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pharmaceutical products and dairy foods are mostly pro-

uced during the fermentation process in a fed-batch culture

 Park, Kim, Lee, & Lee, 2011 ). This process is a part of metabolic

ngineering, which is a practice in industrial biotechnology
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 Robles-Rodriguez et al., 2017 ). In a bioreactor, fed-batch culture

onverts substrates (i.e. glucose) to desired metabolites, notably

actic acid ( Oh et al., 2011; Zain, bin, Kanesan, Kendall, & Chuah,

018 ). The host cell plays an important role in this process, which

cts as a factory to produce the desired metabolites (products)

nder the controlled condition. Bacterium cells with high growth

ate such as Escherichia coli ( E. coli ) and Saccharomyces cerevisiae

 S. cerevisiae ) are widely used as cell factories in scientific research

s well as in producing food and dairy ( Dobson et al., 2010; Park

t al., 2011 ). Moreover, mammalian cells such as Chinese hamster

vary (CHO) has been used to manufacture therapeutic proteins

uch as insulin for diabetes treatment ( Ahn & Antoniewicz, 2012 ). 
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Nowadays, computational modeling in systems biology plays an

important role in assisting metabolic engineering through in sil-

ico approach. The biological processes of a cell could be formu-

lated via a mathematical model using ordinary differential equa-

tions (ODEs) to mimic the behavior of a real cell. Thus, by utiliz-

ing and simulating the model, biologists can understand, predict

and improve the products in order to meet the industrial demands

( Cvijovic, Bordel, & Nielsen, 2011 ). One type of model which is ca-

pable of executing this task is the kinetic model ( Billa et al., 2017;

Saa & Nielsen, 2016 ). Mechanistic and dynamic details of a kinetic

model signify various beneficial information such as biochemical

reactions, cell compartments, and rate of metabolites concentration

( Miskovic, Tokic, Fengos, & Hatzimanikatis, 2015 ). The development

of kinetic models provides a novel paradigm in the rational design

of cell factory which could be beneficial in various biotechnology

applications ( Jahan, Maeda, Matsuoka, Sugimoto, & Kurata, 2016 ). 

Recently, research efforts have been focused on building large-

scale kinetic models. These large models could be employed to

predict near-optimal alterations required to improve desired prod-

ucts and simultaneously maintain other functions in the host in a

minimal but essential level. This provides benefits in terms of ra-

tional design in cell factories. For instance, current kinetic model-

ing practice involves scaling-up a specific metabolic process such

as glycolysis from pathway level to genome level. With such ef-

fort, the interaction of biochemical reactions in this process could

be investigated at the genome level. This proves an opportunity

for biologists to clone the glycolysis pathway to a new host and

observe its effects ( Gábor, Villaverde, & Banga, 2017; Smallbone &

Mendes, 2013 ). In the near future, the ultimate goal of large-scale

kinetic models is to create whole-cell models which provide dra-

matic impact in the field of systems biology and metabolic engi-

neering ( Karr, Takahashi, & Funahashi, 2015; Macklin, Ruggero, &

Covert, 2014 ). 

However, one of the most daunting tasks in the large-scale

model building is parameter estimation, commonly known as

system identification or model calibration ( Gottu Mukkula &

Paulen, 2017 ). This task consists of applying global optimization

methods in order to explore unknown values of model parameters

that provide the best fit between model prediction and a set of

experimental data. Kinetic models with hundreds to thousands of

kinetic parameters cause a serious challenge in parameter estima-

tion due to the high dimension of search space that is required to

be explored. Thus, in high dimensional kinetic models (such mod-

els may contain hundreds to thousands of parameters), the per-

formance of most optimization methods, especially those using se-

quential metaheuristics, tend to deteriorate and is deemed expen-

sive in terms of computational cost. Therefore, in order to tackle

this issue (especially to reduce the CPU time), parallelization using

cooperative search could be performed ( Li & Wang, 2014; Penas,

Gonzalez, & Egea, 2017; Villaverde, Egea, & Banga, 2012 ). 

The cooperative search strategy is one class of metaheuris-

tic optimization technique that aims to speed up computational

times, convergence rate, and produce a robust algorithm ( Alba,

2005; Crainic & Toulouse, 2010; El-Abd & Kamel, 2005; Nedjah

et al., 2016; Ngo, Sadollah, & Kim, 2016 ). The main benefit of this

technique is that it reduces the computational effort when deal-

ing with large-scale data ( Martin, Ouelhadj, Smet, Vanden Berghe,

& Ozcan, 2013 ). The idea behind this strategy is that algorithms

will exchange and share information between search agents (global

and local searches). Algorithms with different settings will run in

parallel and the results will be gathered and exchanged in or-

der to produce a better solution. Cooperative search is one of

the techniques in parallel metaheuristic methods ( Crainic & Gen-

dreau, 2002; Crainic, Gendreau, Hansen, & Mladenovi ́c, 2004; Cruz

& Pelta, 2009; El-Abd & Kamel, 2005; Talbi & Bachelet, 2006 ). 
n  
One of the prominent methods that have been proposed when

ealing with large-scale models is cooperative enhanced scatter

earch (CeSS) proposed by Villaverde et al. (2012) . CeSS is the par-

llel version of enhanced scatter search (eSS) ( Egea et al., 2014;

gea, Martí, & Banga, 2010 ). The method benefits from multiple

hreads of eSS that could run in parallel. This method exchanges

nformation between threads in fix time intervals. Each thread con-

ists of different parameter settings that lead to different perfor-

ance and search pattern among them. Thus, it acts like a macro-

copic behavior due to the interaction that occurs between individ-

al threads, while this strategy influences the systemic properties

n each eSS thread. The method is able to reduce computation time

nd is efficient in searching different regions of the search space.

owever, the proposed method faces serious issues in terms of ef-

ciency and scalability when dealing with the large-scale model. 

Differential evolution (DE) is widely used and studied in param-

ter estimation of biological systems ( Chong et al., 2014; Zúñiga,

ópez Cruz, & García, 2014 ). However, this method results in high

omputation time due to the high dimensional dataset used. One

ariant of the parallel method using DE was proposed to over-

ome excessive computational cost on large datasets ( Penas, Banga,

onzalez, & Doallo, 2015 ). The method takes advantages of asyn-

hronous parallel implementation and hybrid global and local

earch. Moreover, three heuristics local searches were also used for

ooperation toward global minimum including local solver, tabu

earch, and logarithmic search In order to test this method, the

xperiment was performed using cluster CPU employing 16 nodes

ulticores processor. The result indicated that the method could

ignificantly reduce the computation effort required. The main

eaknesses of the method are that it is time consuming and chal-

enging to tune the control parameters when it involves a large

umber of processors and multiple local searches. 

Recently, a variant of the cooperative search method known as

he self-adaptive cooperative enhanced scatter search (saCeSS) was

roposed which extends CeSS ( Penas et al., 2017 ). It provides sev-

ral novel mechanisms in terms of asynchronous cooperative and

elf-tuning strategies. This promising method employs parallel im-

lementation using coarse-grained and fine-grained parallelization.

he method could be performed on High Performance Computing

HPC) systems including clusters of multicore nodes based on Mes-

age Passing Interface (MPI). The strength of this method is that it

s able to significantly reduce the computational time in compar-

son to previous methods (from days to minutes, as reported in

everal cases). However, this method requires expensive computa-

ional resources to achieve significant result via the use of multi-

ore cluster with a large number of nodes. This factor limits the

sage of this method especially in solving large-scale kinetic mod-

ls and whole-cell models. 

In view of expert systems, cooperative search metaheuristic

erves as an intelligence process to search near-optimal values

f kinetic parameters in the model. The process consists of gen-

rating initial random solutions as inputs which were iteratively

mproved using cooperative mechanism and parallel implementa-

ion of global optimization in order to produce the outputs (near-

ptimal values of kinetic parameters). The parameter value ob-

ained in that process is plugged into the ODE model for the sim-

lation purpose, which is the ultimate goal of modeling. By means

f an established (accurate) model, the simulation can be prepared

y fitting the model with experimental data. From this process, the

odel can be seen as a cell factory tool that can answer various

iological hypothesis and as an alternative way to conduct a wet

aboratory experiment. The model can be utilized to predict, eval-

ate, and explore different scenarios of biological processes. For

nstance, the level of metabolite concentration (in millimolar) can

e predicted based on fermentation process duration without the

ecessity of execution of wet lab experiment. This allows biolo-
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ists to design multiple experiments, conduct significant modifica-

ions and improve production, quality, and bioproduct process de-

ign ( Almquist, Cvijovic, Hatzimanikatis, Nielsen, & Jirstrand, 2014 ).

In this study, a cooperative enhanced scatter search with

pposition-based learning schemes (CeSSOL) has been proposed

or parameter estimation in high dimensional kinetic models of bi-

logical systems. The proposed method is capable of reducing the

omputation time as well as providing a robust method in terms

f solution quality (minimum value of the objective function). It is

xpected that the performance of the proposed method is better in

ealing with high dimension parameter estimation problems when

he low-cost computational resource is used (multicores on a sin-

le workstation). Specifically, the main contributions of this study

re: 

(1) In the proposed CeSSOL, a recent variant of eSS, known

as SSCOL (scatter search with combined opposition-based

learning) ( Remli, Deris, Mohamad, Omatu, & Corchado, 2017 )

has been utilized as the individual thread which is executed

in parallel using a small number of processors. SSCOL has

been successfully applied in parameter estimation and large-

scale global optimization problems. In SSCOL, different types

of opposition-based learning schemes have been proposed

at different stages of search processes. For instance, in diver-

sification generation method, quasi-opposition based learn-

ing has been introduced for enhanced initialization. A simi-

lar scheme was applied in solution combination method of

SSCOL in order to enhance the reduced parameter space for

rapid convergence. In addition, quasi reflection intensifica-

tion was introduced in order to improve the intensification

phase. In previous work, SSCOL was proposed and imple-

mented in a serial run and expensive computation time. In

contrast, the proposed method is implemented in a parallel

manner using similar CPU resources as in SSCOL case which

resulted in faster estimation to be potentially utilized in in-

dustrial biotechnology applications. 

(2) In this study, an information exchange strategy between in-

dividual SSCOL thread based on good and diverse solutions

was proposed that is capable of efficiently searching broad

region of solution space. In previous work ( Villaverde et al.,

2012 ), the kinetic parameters values to be shared among

threads were based on the best solution found and the rest

of the solutions ( RefSet ). To the best of our knowledge, this

has limited the diversity of the search region and tends to

stuck in the local minima. In this study, two solutions found

(good and diverse) were utilized among all threads to be

applied as initial solutions along with new initial random

values generated in the initialization stage. These solutions

were then improved by SSCOL. The proposed strategy is ex-

pected to search a wider area of fitness landscape that can

provide a more accurate estimation. Finally, the proposed

CeSSOL method outperforms the state-of-the-art 8-SSCOL (a

parallel version of SSCOL method) on both solution quality

and computation time. 

This paper was organized as follows. Section 2 formulates the

arameter estimation problem, which consists of minimizing non-

inear least squares function with several constraints. Section 3 de-

cribes the recent method, SSCOL, which was proposed to solve

arameter estimation problems. Section 4 introduces the pro-

osed method in this paper, stated as cooperative enhanced scatter

earch with opposition-based learning (CeSSOL). Section 5 demon-

trates the experimental setup including dataset used and other

ethods for comparison. Section 6 discusses the result obtained

rom the computational experiment and comparison made with

revious works. Finally, Section 7 concludes the findings and fu-

ure works of the research. 
. Problem formulation 

Parameter estimation in metabolic engineering application con-

ists of the process to identify the unknown value of parameters

n kinetic models of biological systems. The parameters determine

he accuracy of model prediction where they provide the best fit to

he experimental data. This problem is also formulated as a global

ptimization problem. Optimization methods can be utilized in or-

er to minimize the distance between predicted model and exper-

ment data, which is formulated as nonlinear least squares (NLS)

unction ( Moles, Mendes, & Banga, 2003; Villaverde et al., 2015 ): 

 = 

n o ∑ 

o=1 

( y m o − y m o ( p ) ) 
2 

( σ o ) 
2 

(1) 

here J is the objective function, n o is the number of measured

tates (metabolite products), ym is the measured states, p is the

inetic parameters for estimation, and σ is the weight to balance

he contribution of a different order of magnitude in metabolite

roducts. 

Minimization process of the NLS is subject to the following con-

traints: 

˙ 
 = f ( x, p, t ) (2) 

 ( t 0 ) = x 0 (3) 

 = g ( x, p, t ) (4) 

p L ≤ p ≤ p U (5) 

here x is the state variable and f is the function describing sys-

ems dynamics in the nonlinear biochemical process model. The

nitial condition (concentrations) of x at time zero t 0 was denoted

s x 0 while g is an observation function and p is the kinetic pa-

ameters in the range of lower bound p L and upper bound p U .

iological processes that occur in microorganism cells such as

etabolism and enzymatic reactions are highly nonlinear. ODEs

odels which represent these processes are known to be com-

lex with many interdependencies involved between dynamic state

ariables (metabolites) and higher order interrelationship among

inetic parameters ( Li & Vu, 2013 ). Highly nonlinear systems in

DEs cause multimodality in optimization landscape where local

inima exist ( Moles et al., 2003; Villaverde et al., 2012 ). This phe-

omenon causes most optimization methods to easily converge in

ocal minima and reduces the predictive ability of the model. Thus,

 highly nonlinear model poses a critical challenge in obtaining

ear-optimal model parameter values. 

. Enhanced scatter search with combined opposition-based 

earning (SSCOL) 

SSCOL is a recent variant of scatter search (eSS) ( Egea et al.,

010; Riahi, Khorramizadeh, Hakim Newton, & Sattar, 2017 ) that

as proposed in order to solve large-scale and challenging param-

ter estimation problems ( Remli, Mohamad, Deris, Napis, Sinnott, &

jaugi, 2017 ). It is the extension of eSS ( Egea & Balsa-Canto, 2009;

gea et al., 2010 ) which has been improved in terms of a combina-

ion of opposition-based learning schemes. The schemes are intro-

uced in several parts of eSS which made it efficient, particularly

or improving the speed of convergence, when dealing with high

imensional problems. This method performs extensive exploration

nd intensification in the search space. Contrasting to the orig-

nal eSS, SSCOL employs quasi-opposition based learning scheme

n the RefSet formation. Since the RefSet size is small, only half of

he original Refset is subject to evaluation in order to generate a
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Table 1 

Algorithm 1. Scatter Search with Combined Opposition-based Learning Schemes (SSCOL). 

Input : Experimental data, model parameter values (randomly generated within bounds) 

Output : Near-optimal model parameter values 

1: Generate initial RefSet with high quality and quasi-opposite members 

2: repeat 

3: Sort RefSet by quality [ x 1 , x 2 , . . . , x dim _ re f set ] so that 

f ( x i ) ≤ f ( x j ) where i, j ∈ [ 1 , 2 , . . . , dim _ re f set ] and i < j 

4: if max ( abs ( x 
i −x j 

x j 
) ) ≤ ε with i < j then 

5: Replace x j by a random solution 

6: end if 

7: for i = 1 to dim _ re f set do 

8: Combine x i with the rest of population members to generate a set of dim_refset new 

members, offspring i using quasi-reflection combination 

9: x i 
of f 

= best solutions in offspring i 

10: if x i 
of f 

outperforms x i then 

11: Apply quasi-reflection intensification and perform quasi-reflection with probability 

12: end if 

13: end for 

14: Update best solution found x best and its objective function value f best 

15: Perform a local search from x best to obtain x ∗ based on competitive ranking initial 

selection and balance between quality and diversity 

16: if f ( x ∗) < f ( x best ) 

17: Update x best , f best 

18: end if 

19: until stopping criterion is met 

Note: The introduced opposition-based learning schemes are shown in lines 1, 8 and 11. 
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quasi-opposite solution. Hence, the method is able to provide high-

quality RefSet with fewer function evaluations. Moreover, the orig-

inal combination method in eSS has been modified to efficiently

accelerate the search process in high dimensional search space.

The modification employs quasi-reflection combination to quickly

reach a high-quality solution, which leads to faster convergence.

Another additional feature in SSCOL is the introduction of jump-

ing rate j r to perform intensification using quasi-reflection. The

feature improved the intensification phase by generating a quasi-

reflection solution to accelerate search process. These three modi-

fications, which were based on a combination of opposition-based

learning schemes, significantly improved the performance of orig-

inal eSS in terms of convergence speed and solution quality. Fur-

ther details regarding this optimization method can be found in

Remli et al. (2017) . Table 1 depicts the SSCOL algorithm. 

SSCOL is considered as a better metaheuristic method compared

to the original eSS. However, when dealing with a large number of

parameters the computational cost is still excessive due to the high

dimensional (hundreds of kinetic parameters) search space that is

required to be explored. 

4. Cooperative enhanced scatter search with opposition-based 

learning (the proposed method) 

In this study, an improved cooperative metaheuristic method

known as CeSSOL (cooperative enhanced scatter search with

opposition-based learning) is proposed. This method shares

the idea of cooperative enhanced scatter search (CeSS)

( Villaverde et al., 2012 ) but is different in terms of three fun-

damental modifications. Firstly, this method employs SSCOL for

parallel threads, which has been proven to solve parameter esti-

mation problems. Secondly, the information exchange strategy in

this method utilizes good and diverse solutions as well as newly

generated random solutions in order to form a RefSet for each

thread. The strategy is not restricted to all members of RefSet for

information exchange which is driven by the best solution found,

and the RefSet that contains information regarding the diversity

of solutions. Thirdly, this method employs a number of function

evaluations for stopping condition in each thread instead of CPU

time. The main strategy in CeSSOL is to execute an optimization

process via several threads η in parallel execution. Each thread
mplements an optimization method using SSCOL. During the

ptimization process, information (solutions or kinetic parameters)

n RefSet ref j are exchanged between threads for every cooperative

teration co iter . Thus, those RefSet which has high quality solutions

ill be used in order to further guide the search process and thus

nhancing the systemic properties in every SSCOL. It should be

oted that the cooperative search method does not solely speed

p the computational time, but it is expected that it could produce

 robust result in solving challenging optimization problems. Fig. 1

nd Table 2 demonstrate the flowchart and pseudocode of the

roposed CeSSOL, respectively. The final output of this method is a

ear-optimal set of kinetic parameters which can be found in the

upplementary material. 

.1. Schematic representation of CeSSOL 

To reap full benefit from the implementation of a coopera-

ive search method, multicores processor is required. In order

o run multiple parallel SSCOL threads in the MATLAB environ-

ent, jPar library which consists of three components was adopted

 Karbowski, Majchrowski, Trojanek, Pokorski, & Załuga, 2015 ): 

1) Registration server 

2) Solvers (Slave threads) 

3) Client (Master thread) 

The first process involves starting the registration server using

 single Java executable JAR file through the command line. The

egistration server is responsible for managing a set of solvers

threads). Then, several MATLAB instances were launched. One of

he instances was used for the jPar console (as Master thread

r central processor) and the rest were used for solvers (Slave

hreads). The Slave threads were started in the same directory and

nce they have been started, they will wait for input to be pro-

essed. Each slave thread blocks the current MATLAB session until

 new task is available, while the Master thread acts as a client or

entral processor which manages all tasks including dividing the

ata into chunks and distributing parameter setting for all threads.

Fig. 2 depicts the schematic representation of CeSSOL. Every

hread has one MATLAB session running SSCOL method while

hread 0 acts as a central processor. Information exchange strategy

etween cooperative iteration enables each thread to benefit from
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Fig. 1. Flowchart of the proposed CeSSOL method. 

Table 2 

Algorithm 2. Cooperative Enhanced Scatter Search with Opposition-based Learning (CeSSOL). 

Input : Experimental data and randomly generated kinetic parameters values 

Output : Near-optimal values of kinetic parameters 

1: Initialization of Master (Processor 0 ) and Slave (Processor j ) threads 

2: Set parameters that are common for all threads 

3: Set control parameters for each thread 

4: Initialize global reference set ( RefSet ) array: Global ref = [] 

5: for i = 1 to co iter do 

6: for j = 1 to η do 

7: Slave thread j (parallel processing): run optimization using SSCOL (Algorithm 1) 

8: (Algorithm 1) 

9: if nfeval co then 

10: if ref j �∈ Global ref then 

11: Global ref = [ Global ref ,ref j ] 

12: end if 

13: Assign good and diverse solutions as initial solutions for next co iter in all threads (Algorithm 3) 

14: in all threads (Algorithm 3) 

15: end if 

16: end for 

17: end for 

18: Final solution = best solution in Global ref 

Note: nfeval co is the number of function evaluations for all threads. This stopping condition is for all threads based on the predefined 

value from Eq. (6 ). 

ref j is the RefSet that contains unique solutions from each thread j . 

co iter is the number of cooperative iteration and this value can be set based on trial and error. Starting from cooperative iteration 2, 

all threads receive two solutions (best and diverse) as initial solutions while the rest of the solutions is completed by using a random 

number. From that, the new RefSet with the fixed size is created. 



136 M.A. Remli et al. / Expert Systems With Applications 116 (2019) 131–146 

Fig. 2. Schematic representation of CeSSOL (adopted from Villaverde et al., 2012 ). 

The number of cooperative iteration co iter is defined by the number of iteration of 

all the SSCOL threads to be run at fix intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Parameter setting for all common SSCOL threads. 

Parameters Values 

Number of diverse solutions ( ndiverse ) 1,170 for CHO and 1,160 for 

CCM 

RefSet size ( dim_refset ) 10 

Number of function evaluations for 

every thread per iteration 

24,0 0 0 for CHO and 18,0 0 0 for 

CCM 

Jumping rate J r 0.3 

Local search fmincon 

Note: Number of function evaluations for every thread per iteration is set accord- 

ing to Eq. (6 ). CHO is the Chinese hamster ovary cell, while CCM is central carbon 

metabolism. Both datasets were used to test and evaluate the proposed method. 

More description of this data can be observed in the experimental setup section. 

Table 4 

Control parameters for each thread. 

Parameter Description 

local.n2 Number of iterations between two 

local searches 

balance Balance between diversification and 

intensification of initial points for local 

search 
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the solutions gathered by other threads. It should be noted that

every SSCOL thread has a different parameter setting to vary the

search behavior among them. Thus, the proposed method changes

the systemic properties for all SSCOL threads in order to find global

minimum, especially for challenging optimization and parameter

estimation problems. Additional details on parameter setting in all

SSCOL threads will be discussed in the next subsection. 

4.2. Common parameters for all threads 

All SSCOL threads share common parameters that are number

of diverse solutions ( ndiverse ), RefSet size, number of function eval-

uations, jumping rate, and local search. The ndiverse for each SSCOL

thread is set to the recommended size as described in the previ-

ous work ( Remli et al., 2017 ). The size that is ten times bigger than

the size of kinetic parameters is employed in order to ensure that

the initial solutions are sampled in the broad area thus increas-

ing the chance of obtaining global minimum. In order to reduce

the time required for evaluating objective function, the RefSet size

must be set to a lower number. In this method, the RefSet size was

set manually by trial and error method after the initial exploratory

run was performed. 

In terms of function evaluations, every thread has the same

number of function evaluation, which was used as the stopping

condition for each SSCOL thread. Thus, this study defines a new

tunable parameter of function evaluations for each cooperative
hread nfeval co as: 

f e v a l co = 

n f e v a l se 

c o iter 

(6)

here nfeval se is the maximum number of function evaluations

sed for a sequential run of SSCOL, and co iter is the number of co-

perative iteration. It should be noted that previous works adopted

he CPU time of each thread as the time between information ex-

hanges. However, due to different hardware specifications, a num-

er of function evaluations will be able to provide an unbiased

omparison between different methods. Table 3 depicts a common

arameter setting for all SSCOL threads. 

In Table 3 , ndiverse , jumping rate J r , and local search are set

ith the default setting as in previous work ( Remli et al., 2017 ).

eanwhile, the value for RefSet size is much lower ( dim_refset = 10)

han in the previous work ( dim_refset = 36). This value was ob-

ained after trial and error was performed. 

.3. Control parameters for each thread 

Instead of setting the same control parameters for all threads,

ach thread could be set with specific parameters which would re-

ult in different performance and search characteristics. This differ-

nt parameter setting could alter the search processes due to the

andom nature of SSCOL method. In this study, the following pa-

ameter could be set with a different value for each balance and

ocal.n2 thread. Table 4 depicts the control parameters and their

escriptions for each thread in CeSSOL. 

Table 5 demonstrates the value of parameter settings for each

hread. These parameters were set after several initial runs (trial

nd error) have been performed. The parameter settings for SSCOL

nfluence its performance in solving optimization and parameter

stimation problems. Since the fitness landscape - either rugged

r smooth surface - of the problems are usually unknown (ex-

ept for large-scale global optimization benchmark functions), it

s essential to possess various settings for every thread. ‘Aggres-

ive’ threads have a small value of balance and local.n2 parameters,

hich are suitable for a smooth surface. They focus on intensifica-

ion by launching local search frequently. ‘Conservative’ threads, on

he other hand, focus on searching broad area of search space and

pending more time on solution combination. In addition, ‘Conser-

ative’ threads have a large value of both parameters and are suit-
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Table 5 

Parameter settings for each thread (thread 1–8). 

Thread Balance Local.n2 

Thread 1 (SSCOL 1) 0 1 

Thread 2 (SSCOL 2) 0 4 

Thread 3 (SSCOL 3) 0 8 

Thread 4 (SSCOL 4) 0 10 

Thread 5 (SSCOL 5) 0.25 20 

Thread 6 (SSCOL 6) 0.25 30 

Thread 7 (SSCOL 7) 0.25 50 

Thread 8 (SSCOL 8) 0.5 7 

Note: These parameters are set after initial experiments have been performed. These 

values gave the best performance for each thread. 

Table 6 

Algorithm 3 Pseudo-code of the proposed information exchange strategy based on 

good and diverse solutions. 

Input : All RefSet members for every thread 

Output : Two RefSet members (good and diverse solutions) 

1: Merge all RefSet obtained from every thread 

2: Get the good solution in RefSet ( x min ) using Eq. (7 ) 

3: for all RefSet members do 

4: Compute sum difference between good solution ( x min ) and all 

RefSet ( x i ) using Eq. (9 ) 

5: end for 

6: Get maximum difference of solution x max using Eq. (8 ) 
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Table 7 

Number of threads and cooperative iterations in CeSSOL. 

Parameters Values 

Number of threads η 8 

Number of cooperative iteration co iter 5 

i  

t  

e  

1  

t  

R  

t  

R  

p  

a  

e  

R  

b  

T  

p  

p  

r  

p  

b

4

 

t  

i  

s  

i  

w  

p  

c  

p  

s  

i  

t  

c  

t  

p  

s  

t  

n  

s  

b  

t  

t  

i  

t  

r  

f

5

5

 

u  

b  

m  

m  
ble for the rugged surface. The combination of ‘aggressive’ and

conservative’ threads is known to be beneficial for solving difficult

nd challenging parameter estimation problems. 

.4. Information exchange strategy 

Information exchange plays an important role in cooperative

earch. Parallel run of several SSCOL threads produces the output

 RefSet ) based on fixed number of function evaluations and these

efSet were employed as information to be exchanged with other

hreads. In this work, the information exchange is based on good

nd diverse solutions along with random initial solutions. Two so-

utions from merged RefSet were used as the initial solution for

he next cooperative iteration. The first element is the good solu-

ion value, which in this study, is the lowest value ( x min ), that is

efined as: 

 min = min ( Re f Set ) (7) 

here RefSet contains a set of candidate solutions obtained from

everal SSCOL threads. The second element is a diverse solution

alue ( x max ), which was selected based on the largest distance be-

ween a good solution and the rest of candidate solutions, defined

s: 

 max = max ( d ) (8) 

here 

 = abs 

n ∑ 

i =1 

x min − x i (9) 

bs is absolute value and x i is the remaining candidate solutions

n RefSet . Thus, good and diverse solutions were used to guide all

SCOL threads for the remaining cooperative iterations. The algo-

ithm for information exchange proposed in this research has been

emonstrated in Table 6 . 

In Algorithm 3, information exchange occurs when all threads

ave reached the number of function evaluations in each coopera-

ive iteration. Once all threads have completed the tasks, all RefSet

embers from parallel threads are merged. Two solutions, which

s the best solution x min and diverse solution x min from the merged

efSet is then used as the initial solutions for the next cooperative
teration. From here, every SSCOL will use good and diverse solu-

ions as well as the random number as initial solutions before gen-

rating a RefSet . For instance, if the size of the initial solutions is

00, the size will be then increased to 102. Next, the quality of ini-

ial solutions is sorted before forming a small RefSet (e.g. 10). The

efSet consists of high quality solutions which were selected from

he initial solutions. Thus, there is no increase in the size of the

efSet for every thread. Recent work ( Villaverde et al., 2012 ) em-

loyed all RefSet members that were obtained from parallel threads

s initial solutions. In addition, their information exchange strat-

gy was also based on best solutions found and the rest of the

efSet . However, their method prevents the initial random num-

er to be generated as initial solutions for the rest of the iteration.

he main drawback of their strategy is limited randomness, which

revents the exploration of other diverse solutions. This study em-

loys only two elements to be exchanged and combines them with

andom values for each cooperative iteration. This strategy is ex-

ected to increase the diversity when combined with opposition-

ased learning schemes which is introduced in SSCOL. 

.5. Number of threads and cooperative iteration in CeSSOL 

In CeSSOL, the number of threads depends on the availability of

he physical multicore processors. This aspect influences the max-

mum number of parallel threads which could be launched. This

tudy uses 8 available threads, which is the maximum process-

ng power that the CPU can support. In the parallel environment,

hen cluster nodes or HPC is used, the processing speed is ex-

ected to increase due to the availability of a large number of pro-

essors. However, the synchronization of the threads by the pro-

osed method may decrease its scalability. Thus, the increase in

peed will not be directly proportional (linear) with the arbitrar-

ly large number of threads (processors). This could occur due to

wo reasons. First is the communication overhead caused by syn-

hronization between threads. Some of the threads will complete

he search process earlier than other threads due to the different

arameter settings set for each thread. This will waste the CPU re-

ources, as it will be idle while waiting for other threads. Second is

he risk of overlapping by carrying out a similar search in a large

umber of different threads. This occurs due to the relatively small

ize of the RefSet ( Villaverde et al., 2012 ). Hence, when the num-

er of threads is very large, the resulting speed is smaller than

he increase in computational effort. Table 7 displays the parame-

er values of the number of threads η and number of cooperative

teration co iter . After initial trial and error, the co iter is set to 5, since

his value provides the best performance for solving large-scale pa-

ameter estimation problems. With co iter defined, the number of

unction evaluations nfeval co in Eq. (6 ) can be computed. 

. Experimental setup 

.1. Dataset 

Two sets of large-scale kinetic model of biological systems were

sed namely Chinese hamster ovary (CHO) cells and central car-

on metabolism (CCM) in E. coli . Both data are standard bench-

ark data published to test the efficiency of parameter estimation

ethods. CHO cells consist of 117 kinetic parameters, while CCM
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Table 8 

Parameter setting in SSCOL and eSS(rerun). 

Parameters Values 

Number of diverse solutions (initial solutions) 1170 for CHO and 1160 for CCM 

RefSet size 36 

Local.n2 10 

Balance 0.5 

Reference: Remli et al. (2017) . 
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cells consist of 116 parameters. These large number of kinetic pa-

rameters cause a serious challenge in terms of computation time

in parameter estimation methods ( Villaverde et al., 2015 ). 

5.2. Method comparison 

The proposed CeSSOL method was executed 20 times as pro-

posed by the benchmark criteria. It is not easy to make a fair

comparison between the parallel method (CeSSOL) and sequential

methods. By means of the main goals of minimizing computation

time and improving results obtained in Remli et al. (2017) , the pro-

posed method was compared to a previous study that used a se-

quential method including DE, PSO, eSS, SSCOL, and another modi-

fied eSS namely quasi-opposition enhanced scatter search (QeSS).

QeSS is another variant of eSS that modifies the diversification

method in the original eSS. The modification is performed by em-

ploying quasi-opposition based learning to create an initial solu-

tion using diversification generation method. Mainly, QeSS’s feature

consists of a multi-step diversification method to generate initial

random solutions and simultaneously produce quasi-opposite of

the initial solutions. Both solutions were compared and the fittest

one (in terms of lowest NSL value) was selected as a member of

RefSet . 

In order to make a comparison with sequential methods, the

same total number of function evaluations was used, as in previ-

ous work. Here, the total number of function evaluations was di-

vided by a number of cooperative iterations. For example, in CHO

dataset, the total number of function evaluations of the sequential

method reported in previous work was 120,0 0 0. Thus, in every co-

operative thread, only 24,0 0 0 evaluations were performed. Total 5

cooperative iteration was then used to complete 120,0 0 0 evalua-

tions. This configuration has been mentioned in Table 3 . Thus, the

total evaluations for the proposed method were only counted for

the threads that were having a good solution compared to other

threads in each iteration. This comparison has several disadvan-

tages including a different number of cores and different param-

eter settings used by the individual sequential and parallel meth-

ods, which might result in an unfair comparison. The parameter

setting of the sequential methods (eSS and SSCOL) has been shown

in Table 8 ( Remli et al., 2017 ). 

Therefore, in order to ensure that the best comparison was

achieved between these methods, the 8-SSCOL method was im-

plemented which uses 8 cores to run SSCOL in parallel without

cooperation. Each core in 8-SSCOL utilized different parameter set-

tings, as practiced by CeSSOL. The difference between CeSSOL and

8-SSCOL is the lack of cooperation among 8-SSCOL threads. The 8-

SSCOL method is a sequential method that runs in an embarrass-

ingly parallel fashion. The best result and fastest execution time

obtained from the 8 parallel non-cooperative threads of 8-SSCOL

was then used to be compared with the proposed method. In addi-

tion, the obtained results were compared with recent studies that

used original eSS ( Villaverde et al., 2015 ) and saCeSS ( Penas et al.,

2017 ). Dell Precision T1700 workstation with Intel Core i7 3.6 Ghz

was utilized to carry out the experiments. It consists of 4 physical

and 8 logical processors (multithreading technology). Thus, 8 log-
cal processors were used in parallel in this work using MATLAB

015a and jPar library. 

. Result and discussion 

.1. Chinese Hamster Ovary (CHO) 

In CHO data, the experimental results report the best, worst,

verage NLS values and standard deviation over 20 runs, as de-

icted in Table 9 . Overall, the table demonstrates that CeSSOL ob-

ained the best value of 32.696 compared to 8-SSCOL (331.39), SS-

OL (34.169), QeSS (35.184), and eSS (36.705). According to this ta-

le, CeSSOL also recorded the most consistent and stable results,

here it obtained the lowest worst value (4 8.66 8) as well as low-

st average value (35.982), and lowest standard deviation (3.4732).

ased on the results, all methods except CeSSOL and 8-SSCOL have

arge standard deviations, which indicates that CHO has high mul-

imodality. However, CeSSOL managed to overcome this challenge

y means of parallel and cooperative strategy. In addition, CeSSOL

as more consistent results for each run and produced the low-

st standard deviation (3.4732) compared to other methods. This is

ue to the advantages of parallel and cooperative search that uti-

izes the benefit of eight threads and exchange strategy mechanism

o explore global minimum. 

Additional information for this comparison has been presented

n the convergence graph in Fig. 3 . In order to perform a fair

omparison, same initial guess (randomly generated) was set for

ll methods, resulting to the same initial NLS value. Based on

he figure, it can be noticed that CeSSOL has better convergence

peed, followed by 8-SSCOL, SSCOL, and QeSS. In this data, CeS-

OL converges to the near-optimal solution when the evaluations

eached approximately 10 0,0 0 0. Meanwhile, SSCOL converges to

he near-optimal solution when its evaluations reached approxi-

ately 64,0 0 0. However, after 64,0 0 0 evaluations, SSCOL solution

topped improving. The same case was recorded for QeSS, where it

onverges very early, around 45,0 0 0 function evaluations with no

urther improvement obtained until 120,0 0 0 evaluations. 

In the proposed method, the best run (minimum value of NLS)

rom each cooperative iteration was selected as the best conver-

ence and the value was used as the initial solution for the rest

f the iteration. Meanwhile, the largest NLS value was selected as

he diverse solution. Both solutions (diverse and good) were used

s the initial solution to modify systemic properties for all SSCOL

hreads which could speed up the convergence rate as well. 

In terms of computation time, Table 10 depicts the results for

verage CPU time (seconds) and speedup ratio for the proposed

ethod compared to sequential 8-SSCOL. The table indicates that

eSSOL obtained the highest speedup with 3007.2 seconds (ap-

roximately 50 minutes) average CPU time compared to 8-SSCOL

hat took nearly two hours. The obtained results revealed that CeS-

OL is able to reduce computational time compared to original eSS

nd other methods (from hours to minutes) with speedup ratio of

.31. This is due to the fact that CeSSOL uses a low number of Ref-

et size and different parameter settings in multiple SSCOL threads

hich leads to faster evaluation and requires less time to achieve a

atisfactory solution. Apart from that, the use of parallel execution

hat utilized eight available SSCOL threads also resulted in faster

omputation time. 

Next, significance test using Wilcoxon signed ranks test, Fried-

an test, and nWins procedure were conducted to examine the

ignificant difference between CeSSOL with other methods as well

s ranking the methods globally. Table 11 demonstrates the results

f the pairwise Wilcoxon signed rank test based on NLS value over

0 runs. Overall, CeSSOL recorded significant result compared to

ther methods. This is indicated by the lowest p -value obtained

 p -value < 0.05) with the level of significance α = 0.05 when com-
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Table 9 

Experimental results for CHO cells over 20 runs. 

Method Nonlinear least squares (NLS) Standard deviation 

Best value Worst value Average value 

DE + 5.3075 • 10 4 1.7121 • 10 5 9.2626 • 10 4 3.3562 • 10 4 

PSO + 2.2378 • 10 2 6.5946 • 10 3 1.4175 • 10 3 1.5119 • 10 3 

eSS (rerun) + 3.6705 • 10 1 2.0747 • 10 2 9.5537 • 10 1 5.2290 • 10 1 

QeSS + 3.5184 • 10 1 1.6583 • 10 2 8.0930 • 10 1 4.8376 • 10 1 

SSCOL + 3.4169 • 10 1 1.5499 • 10 2 7.6727 • 10 1 4.1455 • 10 1 

8-SSCOL 3.3139 • 10 1 6.5189 • 10 2 4.0045 • 10 1 7.4135 • 10 0 

CeSSOL ∗ 3.2696 • 10 1 4.8668 • 10 1 3.5982 • 10 1 3.4732 • 10 0 

∗ The proposed method in this work. Shaded cell represents the best overall result. 
+ Results taken from Remli et al. (2017) . ‘eSS (rerun)’ is the result from Remli et al. (2017) 

(to differentiate from eSS result of the original publication). 

Fig. 3. Convergence curves of best runs for CHO cells. 

Table 10 

Computation time and speedup results for CHO cells over 20 runs. 

Method Average CPU time (seconds) Speedup Ratio 

8-SSCOL 6.9401 • 10 3 1.00 

CeSSOL ∗ 3.0072 • 10 3 2.31 

∗ The proposed method in this work. Shaded cell represents the lowest computa- 

tion time with the highest speedup using 8 threads (processors) with cooperation. 
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Table 11 

Results of the Wilcoxon signed ranks test for CHO based on NLS value. 

Comparison R + R- p -value 

CeSSOL vs DE 210 0 0.0 0 0 089 

CeSSOL vs PSO 210 0 0.0 0 0 089 

CeSSOL vs eSS (rerun) 206 4 0.0 0 0163 

CeSSOL vs QeSS 209 1 0.0 0 0103 

CeSSOL vs SSCOL 203 7 0.0 0 0254 

CeSSOL vs 8-SSCOL 162 48 0.033340 

Note: R + represents the sum of ranks (one method outperformed the others) and 

R − represents the sum of ranks for the opposite. 
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ared to other methods via pairwise comparison. The null hypoth-

sis H 0 , where there is no statistically significant difference be-

ween CeSSOL and other methods (DE, PSO, eSS (rerun), QeSS, 8-

SCOL and SSCOL), was rejected and alternate hypothesis H 1 , which

s the opposite of H 0 , was accepted. 

Based on Table 11 , the nWins procedure was conducted. The

est methods which produced larger R 

+ than R 

− values and p -

alues smaller than 0.05 were granted + 1. The losing methods (R 

−

arger than R 

+ ) with p -values smaller than 0.05 were granted −1.

urthermore, the Friedman test was also used to rank all methods.

he result of this analysis has been presented in Table 12 . Over-
ll, CeSSOL performed excellently compared to other methods with

riedman and nWins values of 1.55 and 6, respectively. 

Additionally, results obtained from this work were compared

ith a recent study that used eSS ( Villaverde et al., 2015 ) and

 recent publication on saCeSS ( Penas et al., 2017 ) for the same

ataset, as shown in Table 13 . It can be seen that CeSSOL ob-

ained a better objective function value J f (32.696) compared to

ther methods. In terms of computational cost, specifically for
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Table 12 

Global ranking of all methods for CHO. 

Method Friedman ranking nWins 

CeSSOL ∗ 1.55 6 

8-SSCOL 2.05 5 

SSCOL 3.60 0 

QeSS 3.65 0 

eSS (rerun) 4.15 0 

PSO 6.00 −5 

DE 7.00 −6 

∗ The proposed method in this work. The lowest mean rank value is the best 

method and the highest mean rank value is the worst method based on Friedman 

ranking. Shaded row represents the best overall result based on Friedman ranking 

and nWins. 
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computational time, saCeSS has far better CPU time, where it

only consumes 343 seconds and obtains 55.0 0 0 J f . Two factors

have contributed to the better computation time for the reported

works; first is the different stopping condition used and the sec-

ond is the different hardware platform utilized. In the first study

( Villaverde et al., 2015 ), the stopping condition of eSS is based on

CPU time, while saCeSS used value to reach (VTR) as its stopping

condition. Meanwhile, this study employed a number of function

evaluations as its stopping condition, which leads to different per-

formance behavior. 

It should be noted that the metrics used for NLS J f and NRMSE

are different. Thus, it could lead to different estimation behav-

ior. For instance, from the CHO result presented in Table 9 , it can

be seen that the lowest objective function J f value (32.696) is ob-

tained from the parameter estimated using CeSSOL. However, the

�NRMSE f of CeSSOL (2.8056) is slightly higher than �NRMSE f of

eSS (re-run) (2.7951), although J f from CeSSOL is lower (better)

than J f from eSS (rerun). Since the lowest J f is expected to produce

the lowest �NRMSE f , there are several possible explanations that

caused this contradiction. First, this data have un-identifiability is-

sue ( Almquist et al., 2014; Raue et al., 2009; Raue, Karlsson, Sac-

comani, Jirstrand, & Timmer, 2014 ). Second, due to the nature of

these large-scale kinetic models (model with hundreds of kinetic

parameters), near-optimal solutions have resulted to over-fitting in

artificial noise. These issues resulted in different behavior for J f and

�NRMSE f in CHO. 

Regarding the issue of un-identifiability, lack of identifiability

indicates that there are some possible model parameters with dif-

ferent values that could obtain the same agreement to the model

prediction in ODEs (model output) ( Gábor et al., 2017 ). Thus, due

to this issue, it was observed that for the case of CHO, the lowest

J f does not necessarily provide the lowest �NRMSE f . Identifiabil-
Table 13 

Comparison of best results between the proposed

Method CPU time (s) J f 

eSS 3.60 0 0 •10 3 4.5718 •10 1 

SaCeSS 3.4300 •10 2 5.50 0 0 •10 1 

DE + 2.2049 •10 4 5.3075 10 4 

PSO + 3.9899 •10 3 2.2379 10 2 

eSS (re-run) + 8.7175 •10 3 3.6705 10 1 

QeSS + 6.8297 •10 3 3.5514 10 1 

SSCOL + 6.7116 •10 3 3.4169 •10 1 

8-SSCOL 6.2303 •10 3 3.3139 •10 1 

CeSSOL ∗ 2.9880 •10 3 3.2696 •10 1 

∗ The proposed method in this research.eSS resu

while SaCeSS is obtained from Penas et al. (2017) 
+ Results taken from Remli et al. (2017) .NRMS

best (minimum) number of function evaluation

best (minimum) objective function (nonlinear lea

�NRMSE f are indicated in shaded cells. J nom = Obje

nal parameters p nom �NRMSE nom = Sum of NRMSE 
ty analysis of this model has been conducted and it was found

hat some parameters had little influence on the model output

 Villaverde et al., 2015 ). In order to illustrate the identifiability is-

ue on CHO data, Fig. 4 illustrates the diagonal plots between nom-

nal parameters (model parameters that generated the data) and

ear-optimal parameters which are obtained from CeSSOL. Plots in-

icated that the difference between nominal and optimal values

as large. In other words, nominal and near-optimal values of pa-

ameters were quite different; however, they resulted in the same

rediction as in the diagonal plot shown in Fig. 5 . 

Regarding the overfitting issue, the lowest J f obtained by the

roposed method provided a better fit to the experimental data

with artificial noise) rather than the one obtained with the nom-

nal parameters used to generate the data. This occurs due to the

resence of artificial noise in CHO, the near-optimal solutions do

ot solely provide the best fits for ODEs, but they also try to pro-

uce a fit for artificial noise (which cannot be obtained from nom-

nal parameters) ( Villaverde et al., 2015 ). Although the reported re-

ults in the literature are better for computational time (due to dif-

erent stopping condition and platforms), in terms of solution qual-

ty (lowest value of nonlinear least squares), this work obtained

he lowest value compared to the results reported in Table 13 .

ence, it is expected that the proposed method will produce a bet-

er model fit. 

In order to assess the quality of the fitted models, normal-

zed root mean square error (NRMSE) was used. It is a standard

easure for goodness of model fit. The NRMSE values for each

etabolite have been tabulated in Table 14 . Lowest NRMSE indi-

ates the best fit for each metabolite. Based on the table, the pro-

osed method in this study produced the lowest NRMSE (best fit)

or L-Lactate, as illustrated in Fig. 6 . 

.2. Central Carbon Metabolism (CCM) of E. coli 

The computational cost for CCM of E. coli is more expensive

ompared to CHO. Due to the high complexity and high dimen-

ionality of this data, the process to evaluate NLS is costly where

t consumes long CPU time. Table 5 depicts the experimental re-

ults where it reports the best, worst, and average values obtained

s well as their standard deviation over 20 runs. Overall, the re-

ults revealed that the proposed method (CeSSOL) obtained excel-

ent results with the best minimum and average values of the ob-

ective function (208.58 and 229.77). Similar pattern was observed

n CHO data, as seen in the CCM data where the lowest NLS value

as obtained from CeSSOL, followed by SSCOL and QeSS. However,

n terms of consistency, there is not much difference in the stan-

ard deviation values of different runs. In addition, CeSSOL pro-
 method and previous works for CHO. 

J nom �NRMSE f �NRMSE nom 

3.9068 •10 1 2.8010 2.8273 

Na Na Na 

3.9068 •10 1 4.3453 2.8273 

3.9068 •10 1 2.9410 2.8273 

3.9068 •10 1 2.7951 2.8273 

3.9068 •10 1 2.8226 2.8273 

3.9068 •10 1 2.8048 2.8273 

3.9068 •10 1 2.8111 2.8273 

3.9068 •10 1 2.8056 2.8273 

lt is obtained from Villaverde et al. (2015) , 

. 

E = Normalized root-mean-square-error.The 

s, the best (minimum) CPU time (s), the 

st squares) values J f and the best sum of 

ctive function values obtained from nomi- 

with nominal parameters. 
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Fig. 4. Difference between the nominal parameters (log) and near-optimal parameters (log) in CHO. 

Fig. 5. Difference between the measured states with nominal parameters and predicted states with near-optimal parameters in CHO. 
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uced the lowest standard deviation (10.150), followed by SSCOL

11.891), and QeSS (17.463). This indicated that for parameter esti-

ation, CCM data is less challenging compared to CHO, where all

he competitive methods (except DE) were able to find satisfactory

olutions. 

The convergence curve of the best run for this data has been

hown in Fig. 7 . Except for DE, all methods produced a high speed

f convergence in the early stage of evaluation. However, after

0,0 0 0 evaluations, CeSSOL produced the best objective value fol-
owed by 8-SSCOL, SSCOL, QeSS, eSS (rerun), PSO, and DE. In view

f computation time, Table 16 represents the average computation

ime and speedup ratio for CCM data. Similar to the previous data,

eSSOL was able to reduce the computation time, taking nearly

wo and half hours compared to 8-SSCOL which consumed nearly

ix hours. This result indicates that CeSSOL was able to obtain bet-

er average CPU time compared to other methods. 

Based on the results of the nonparametric tests presented in

ables 17 and 18 , the proposed method yields to significant im-



142 M.A. Remli et al. / Expert Systems With Applications 116 (2019) 131–146 

Table 14 

NRMSE values for all parameters estimated in CHO. 

Metabolite NRMSE value 

DE + PSO + eSS (rerun) + QeSS SSCOL + 8-SSCOL CeSSOL ∗

Product Protein 0.1625 0.13132 0.1318 0.13138 0.13176 0.1318 0.13172 

L-Methionine 0.27479 0.2587 0.25385 0.25372 0.25325 0.2543 0.25437 

L-Leucine 0.1799 0.18079 0.181 0.18079 0.18096 0.1810 0.18099 

L-Lactate 0.051246 0.048955 0.046447 0.046562 0.046397 0.0464 0.046315 

beta- d -Glucose 0.14469 0.14636 0.14412 0.14413 0.14432 0.1446 0.14466 

L-Aspartate 0.32515 0.089176 0.086051 0.086009 0.08528 0.0851 0.08522 

L-Malate 0.28523 0.24388 0.24943 0.24874 0.24939 0.2495 0.2495 

Pyruvate 0.24223 0.25596 0.2563 0.25805 0.25743 0.2579 0.25751 

Oxaloacetate 0.52836 0.54308 0.39091 0.4166 0.39758 0.4035 0.39919 

ATP (Cytosol) 0.27957 0.28514 0.2851 0.28525 0.28514 0.2851 0.28518 

ATP (Mitochondria) 0.42778 0.25551 0.25054 0.25478 0.25342 0.2527 0.25466 

ADP (Mitochondria) 1.1554 0.24221 0.25909 0.26445 0.26273 0.2620 0.26208 

ADP (Cytosol) 0.2884 0.25988 0.26047 0.25215 0.25716 0.2572 0.2542 

∗ The proposed method in this research. Shaded cells represent the lowest (best) NRMSE values for each metabolite. 
+ Results taken from Remli et al. (2017) . 

Table 15 

Experimental results for CCM of E. coli over 20 runs. 

Method Objective function (Nonlinear least squares) Standard deviation 

Best value Worst value Average value 

DE + 4.1203 • 10 2 6.1407 • 10 2 5.1741 • 10 2 4.5680 • 10 1 

PSO + 2.3787 • 10 2 4.1090 • 10 3 1.1403 • 10 3 1.5838 • 10 3 

eSS (rerun) + 2.2918 • 10 2 2.7007 • 10 2 2.4843 • 10 2 1.0465 • 10 1 

QeSS + 2.3129 • 10 2 2.9771 • 10 2 2.5188 • 10 2 1.7463 • 10 1 

SSCOL + 2.0992 • 10 2 2.5642 • 10 2 2.4107 • 10 2 1.1891 • 10 1 

8-SSCOL 2.2980 • 10 2 2.4541 • 10 2 2.3688 • 10 2 5.6121 • 10 0 

CeSSOL ∗ 2.0858 • 10 2 2.4555 • 10 2 2.2977 • 10 2 1.0150 • 10 1 

∗ The proposed method in this research. Shaded cell represents the best overall result. 
+ Results adopted from Remli et al. (2017) . 

Table 16 

Computation time and speedup results for CCM over 20 runs. 

Method Average CPU time (seconds) Speedup Ratio 

8-SSCOL 2.1071 • 10 4 1.00 

CeSSOL ∗ 8.5844 • 10 3 2.45 

∗ The proposed method in this research. Shaded cell represents the lowest com- 

putation times with the highest speedup using 8 threads (processors). 

Table 17 

Results of the Wilcoxon signed ranks test for CCM based on NLS value. 

Comparison R + R- p -value 

CeSSOL vs DE 210 0 0.0 0 0 089 

CeSSOL vs PSO 209 1 0.0 0 0103 

CeSSOL vs eSS (rerun) 209 1 0.0 0 0103 

CeSSOL vs QeSS 203 7 0.0 0 0254 

CeSSOL vs SSCOL 184 26 0.003185 

CeSSOL vs 8-SSCOL 182 28 0.004045 

Note: R + represents the sum of ranks (one method outperformed the others) and 

R − represents the sum of ranks for the opposite. 

Table 18 

Global ranking of all methods for CCM. 

Method Friedman ranking nWins 

CeSSOL ∗ 1.55 6 

8-SSCOL 2.50 4 

SSCOL 3.40 1 

QeSS 4.20 0 

eSS (rerun) 4.25 −1 

PSO 5.35 −5 

DE 6.75 −5 

∗ The proposed method in this work. The lowest mean rank value is the best 

method and the highest mean rank value is the worst method, based on Friedman 

ranking. Shaded row represents the best overall result based on Friedman ranking 

and nWins. 
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rovements over other methods. This was demonstrated by the re-

ult of Wilcoxon pairwise comparison that recorded p -value lower

han 0.05. On the other hand, the proposed method also ranked

rst in terms of Friedman ranking and nWins procedure. By means

f a parallel strategy, the proposed method could improve parame-

er estimation result in terms of its ability to minimize NLS values,

onvergence speed, and computation time. 

Table 19 demonstrates a comparison between this study and

wo other studies which utilized eSS ( Villaverde et al., 2015 ) and

aCeSS ( Penas et al., 2017 ). The table indicates that the proposed

ethod in this study produced superior results in terms of the

ower objective function value J f and lower value of �NRMSE f . In

erms of CPU time, saCeSS obtained the lowest time (1694 sec-

nds). From the comparison, it can be noticed that this study ob-

ained the lowest �NRMSE f value compared to the benchmark and

riginal �NRMSE ex , indicating that the parameters estimated by

his study provides the best possible fit to the real experimental

ata. The NRMSE values for each metabolite have been shown in

able 20 , where the lowest NRMSE indicates the best fit for each

etabolite. Based on the table, the proposed method in this study

roduced the lowest NRMSE for GAP. Specifically, model parameter

alues obtained from CeSSOL produced the best fit for the GAP in

CM, as shown in Fig. 8 . On the other hand, parameter values ob-

ained from SSCOL produced the best fit for PEP, G6P, and GLCex.

ther than that, the lowest NRMSE for other metabolites were ob-

ained by other methods. Values of kinetic parameters obtained

rom all methods employed in this experiment including DE, PSO,

SS (rerun), QeSS, SSCOL, 8-SSCOL, and CeSSOL have been provided

n supplementary material. 

It was interesting to observe that the proposed method does

ot yield the lowest (best) values for all metabolites in CHO and

CM data. In some metabolites, parameters estimated from other

ethods provided slightly better NRMSE values, except for DE



M.A. Remli et al. / Expert Systems With Applications 116 (2019) 131–146 143 

Fig. 6. Fitted model of L-Lactate metabolite. Experimental data with artificial noise is shown as bars. The fittest model was obtained from CeSSOL. 

Fig. 7. Convergence curves of best run for CCM of E. coli. 
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n which it resulted to poor fit in most of the metabolites. Ac-

ordingly, it is believed that the minimum value of the objective

unction J f does not guarantee the lowest NRMSE for all metabo-

ites. This indicates that although the minimum objective func-

ion values were obtained by CeSSOL, it did not produce the low-

st NRMSE for all metabolites for both data (CHO and CCM) com-
ared to other methods. This situation occurs due to the higher

rder interrelationship between kinetic parameters in ODEs and

nterdependency between metabolites (state variables). Thus, due

o the stochastic (random) nature of the problems and several

etabolites (13 in CHO and 9 in CCM) considered for estimation,

ome methods may produce the lowest NRMSE values for partic-
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Table 19 

Comparison of best results between the proposed method and previous works for CCM of E. coli . 

Method CPU time (s) J f J ex �NRMSE f �NRMSE ex 

eSS 1.0800 •10 4 2.3390 •10 2 3.1087 •10 4 2.8010 3.6065 

saCeSS 1.6940 •10 3 2.50 0 0 •10 2 Na Na Na 

DE + 5.2229 •10 4 4.1203 10 2 3.1087 •10 4 3.2341 3.6065 

PSO + 2.3248 •10 4 2.3786 10 2 3.1087 •10 4 2.6138 3.6065 

eSS (re-run) + 4.3591 •10 4 2.2918 10 2 3.1087 •10 4 2.4349 3.6065 

QeSS + 2.7770 •10 4 2.3129 10 2 3.1087 •10 4 2.4677 3.6065 

SSCOL + 2.7605 •10 4 2.0992 •10 2 3.1087 •10 4 2.3879 3.6065 

8-SSCOL 2.4271 •10 4 2.2980 •10 2 3.1087 •10 4 2.4131 3.6065 

CeSSOL ∗ 1.3996 •10 4 2.0858 •10 2 3.1087 •10 4 2.3804 3.6065 

Note: eSS result is obtained from Villaverde et al. (2015) , while saCeSS obtained from Penas et al. (2017) . 
+ Results taken from Remli et al. (2017) .The best (minimum) number of function evaluations, the best (mini- 

mum) CPU time (s), the best (minimum) objective function (nonlinear least squares) values J f and the best �NRMSE f 
are indicated in shaded cells. J ex = Objective function values obtained from original the parameters reported in 

publication. �NRMSE ex = Sum of normalized root-mean-square-error with original parameters reported in publication. 

Table 20 

NRMSE values of all metabolites in CCM of E. coli . 

Metabolite NRSME value 

DE + PSO + eSS (rerun) + QeSS + SSCOL + 8-SSCOL CeSSOL ∗

PEP 0.6446 0.4430 0.4162 0.4155 0.3714 0.4080 0.4031 

G6P 0.3124 0.1489 0.1388 0.1284 0.1234 0.1419 0.1276 

PYR 0.3323 0.2440 0.2521 0.2555 0.2631 0.2547 0.2597 

F6P 0.1701 0.2072 0.1823 0.1890 0.1780 0.1783 0.1789 

ex. GLC 0.1912 0.2045 0.1906 0.1904 0.1836 0.1865 0.1854 

GLP 0.2112 0.2439 0.1751 0.1868 0.1976 0.1634 0.1924 

6PG 0.2698 0.1667 0.1058 0.1215 0.1187 0.0961 0.1097 

FDP 0.2951 0.2104 0.2496 0.2464 0.2391 0.2583 0.2402 

GAP 0.8073 0.7453 0.7244 0.7342 0.7129 0.7260 0.6835 

∗ The proposed method in this research. Shaded cells represent the lowest (best) NRMSE value for each metabolite. 
+ Results taken from Remli et al. (2017) . 

Fig. 8. Fitted model of GAP metabolite. The lowest NRMSE is obtained from CeSSOL. 
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ular metabolites, although they do not produce lowest objective

functions J f which contain the sum of NLS values for all metabo-

lites. 

The cooperative method proposed in this study aims to reduce

the computation time as well as maintaining the minimum (best)
olution quality. Based on the obtained NLS values, CeSSOL has

anaged to produce the lowest value compared to other methods

ncluding eSS and eSSCOL for both CHO and CCM data. The advan-

ages of information sharing by the proposed method have resulted

n improved systemic properties in all sequential CeSSOL threads,



M.A. Remli et al. / Expert Systems With Applications 116 (2019) 131–146 145 

a  

t  

k  

i  

l  

l  

C  

s  

t  

T  

u  

o  

r  

b  

b  

t  

i  

t

7

 

c  

c  

i  

f  

e  

t  

d  

a  

m  

m  

t  

t  

C

 

w  

t  

c  

s  

c  

a  

c  

p  

c  

r  

t  

T  

s  

e  

d  

t  

s  

a  

p  

t  

t  

t  

b  

t  

c  

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

E  

v  

R  

Q

S

 

f

R

A  

 

A  

A  

 

B  

 

 

C  

 

 

C  

 

C  

C  

 

C  

 

C  

 

nd at the same time, improved the values of the objective func-

ion and recorded faster computation time. Providing high-quality

inetic parameter values to be used to guide the search process

n all parallel threads by using a combination of opposition-based

earning schemes is the important factor that contributed to the

owest (improved) NRMSE for L-Lactate (in CHO cells) and GAP (in

CM). The method is able to explore different regions of parameter

pace based on the proposed cooperative mechanism that shares

he best value and diverse (worst) value among eSSCOL threads.

he proposed method provides a better alternative to search for

nknown parameter values in a large-scale kinetic model of bi-

logical systems. Based on the experimental outcomes, the pa-

ameter values obtained from the proposed methods produced the

est-fitted model prediction of two biological models which have

een widely utilized in industrial biotechnology research. The fit-

ed model that contains metabolites concentrations could be used

n simulation and prediction of biological systems. The usage of

hese models will save both time and resources. 

. Conclusion 

Preparing a predictive model of highly nonlinear metabolic pro-

esses of microorganism cells is known to be challenging and time-

onsuming. The challenging issue that arises in such model build-

ng is parameter estimation that involves the process of searching

or near-optimal values of kinetic parameters. The values of param-

ters influence the accuracy of model prediction, where they de-

ermine the distance between model prediction and experimental

ata. This issue received great attention in both systems biology

nd metabolic engineering fields, especially involving large-scale

odels. Metaheuristic methods based on sequential global opti-

ization are suitable candidates to surmount this issue. However,

heir main drawback is in terms of performance deterioration due

o high computational cost (in terms of function evaluations and

PU time) when solving high-dimensional data. 

In this study, an improved cooperative metaheuristic method

ith information exchange strategy was proposed in order to solve

he stated issues. The proposed method was based on parallel and

ooperative search. Parallel metaheuristic method based on scatter

earch with combined opposition-based learning (SSCOL) was exe-

uted in multicores CPU on a single machine. Each thread utilized

 small number of RefSet to reduce the computational effort, which

ould speed up the search process. It was observed that the pro-

osed method was able to reduce computation time by two times,

ompared to the sequential method. Moreover, the obtained results

evealed that the method does not solely result in faster computa-

ion time but is also efficient in discovering near-optimal solutions.

his is due to the fact that the proposed information exchange

trategy enhances the systemic properties and search pattern in

ach SSCOL thread. The exchange strategy was based on good and

iverse solutions obtained from previously known solutions. These

wo solutions with the combination of opposition-based learnings

chemes were used to guide the overall minimization process for

ll cooperative threads. However, the main drawback of the pro-

osed method is its inefficient resource (CPU) usage since not all

hreads were used to obtain the good and diverse solutions (only

wo threads out of eight were used in information exchange). Fur-

hermore, the information exchange in this method leads to an un-

alanced scenario where the threads have to wait for all threads

o finish their tasks before new tasks can be launched, which de-

reased the threads’ scalability. As future work, further study will

e performed on the following: 

(i) Additional information exchange strategies will be proposed

and analyzed. Current work solely utilized two solutions

(best and diverse) among the threads to be imported as ini-
tial solutions. It led to the waste of CPU usage, while some

of the other threads did not produce the best and diverse

solutions. Therefore, the performance and systemic behavior

of the proposed method is expected to be influenced when

the best and diverse solutions for each thread is imported as

an initial solution in information exchange strategy. 

(ii) Implementation of cooperative search using parallel dis-

tributed computing including a graphic processing unit

(GPU), high-performance computing (HPC) and computer 

clusters (at least local cluster) are the promising direction

in this research. This can be beneficial if the data is huge

(thousands of kinetic parameters), especially if it involves a

full genome metabolic model. 

(iii) Prior to performing parameter estimation in large-scale

models, it is crucial to conduct an identifiability analysis of

model parameters. This could be performed using several

statistical techniques such as the Fisher Information Matrix

in order to rank the kinetic parameters based on their sen-

sitivity. Identifiability problem occurs when the portion of

kinetic parameters has little influence on the model output.

This analysis is important in order to group the parameters

based on sensitivity ranks and could reduce the model com-

plexity. 

(iv) Additionally, the robustness of the proposed method can be

investigated by applying the method in other challenging

and computational expensive domains such as in large-scale

global optimization (LSGO) problem. 
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