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ABSTRACT This research presents a novel topology preserving map (TPM) called Weighted Voting
Supervision -Beta-Scale Invariant Map (WeVoS-Beta-SIM), based on the application of theWeighted Voting
Supervision (WeVoS) meta-algorithm to a novel family of learning rules called Beta-Scale Invariant Map
(Beta-SIM). The aim of the novel TPM presented is to improve the original models (SIM and Beta-SIM) in
terms of stability and topology preservation and at the same time to preserve their original features, especially
in the case of radial datasets, where they all are designed to perform their best. These scale invariant TPM
have been proved with very satisfactory results in previous researches. This is done by generating accurate
topology maps in an effectively and efficiently way. WeVoS meta-algorithm is based on the training of an
ensemble of networks and the combination of them to obtain a single one that includes the best features
of each one of the networks in the ensemble. WeVoS-Beta-SIM is thoroughly analyzed and successfully
demonstrated in this study over 14 diverse real benchmark datasets with diverse number of samples and
features, using three different well-known quality measures. In order to present a complete study of its
capabilities, results are compared with other topology preserving models such as Self Organizing Maps,
Scale Invariant Map, Maximum Likelihood Hebbian Learning-SIM, Visualization Induced SOM, Growing
Neural Gas and Beta- Scale Invariant Map. The results obtained confirm that the novel algorithm improves
the quality of the single Beta-SIM algorithm in terms of topology preservation and stability without losing
performance (where this algorithm has proved to overcome other well-known algorithms). This improvement
is more remarkable when complexity of the datasets increases, in terms of number of features and samples
and especially in the case of radial datasets improving the Topographic Error.

INDEX TERMS Ensembles, topology preserving mapping, quality measures, SOM, SIM, ViSOM, MLHL-
SIM, GNG, Beta-SIM, WeVoS.

I. INTRODUCTION
The extraction of information from enormous datasets that
are generated by modern experimental and observational
methods is increasingly necessary in almost all industrial
and scientific fields and business operations nowadays. This
‘‘information extraction’’ [1] is defined as the nontrivial
data mining [2], [3] of implicit, previously unknown, and
potentially useful information. Among several fields where
‘‘information extraction’’ is not an easy task, Big data [4]–[8]
is one of the most recent and important topics where the use
of intelligent techniques becomes crucial to be able to extract
knowledge from the enormous amounts of information. One
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of the many techniques used to extract relevant information
is data visualization [9]–[13].

A recent advance in this field is the Beta-Scale Invariant
Map (Beta-SIM) [14], which is based on a modification of a
topology-preserving map that can be used for scale invariant
classification [11], [14], [15, p. 2], [16], [17], by deriving new
learning rules from Beta distribution and applying it to the
SIM [11], [17].

Another widely used clustering and classification algo-
rithm is the Growing Neural Gas (GNG) algorithm, proposed
by Fritzke [18], [19]. It is based on the Neural Gas (NG)
algorithm previously proposed by Martinetz et al. [20] for
finding optimal data representations based on feature vectors,
which is in turn a modification of the widely known SOM.
The main characteristic of the NG algorithm is that instead of
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expanding through the data input space as a fixed grid of units
(as done by the SOM algorithm), the NG algorithm allows the
neighbouring relationships of its units to change, expanding
more like a gas over the data space.

In the other hand, one of the main problems related to
Artificial Neural Networks (ANN) is the fact that they can
be rather instable obtaining different results in spite of being
trained with the same dataset and similar parameters [21].
In this kind of algorithms, samples of datasets are presented in
a random order and algorithms are also randomly initialized
to avoid to benefit the same samples in different runs of the
algorithm. Therefore, the final results after several runs of
training process can be rather different, in spite of an statis-
tical analysis of the results could show that algorithms are
stable [11]. Ensembles are widely used in the ANN and have
proved to be useful for Topology PreservingMaps to increase
the stability of these algorithms [22]. Ensembles [16],
[23], [24] are based on the concept that a group of experts will
get a better results for a problem than a single expert. In this
study, it is combined the WeVoS meta-algorithm [25] with
other recent topology preserving map (Beta-SIM) [14], to get
the novel WeVoS-Beta-SIM. The aim is to improve stability
of the original algorithm (Beta-SIM) getting a better topol-
ogy preserving representation and, therefore, without losing
performance of Beta-SIM algorithm which provides a better
visualization of the internal structure of high dimensional
datasets.

Weighted Voting Supervision (WeVoS) [25] combines the
final network maps of an ensemble of Topology Preserving
Maps in a single one that includes the best features of each
network in the ensemble, trying to solve the problem previ-
ously described of instability of neural networks.

Therefore, this novel research presents and thoroughly
analyses the use of WeVoS meta-algorithm when it is applied
to a new family of learning rules called Beta-SIM, giving
a novel algorithm called WeVoS-Beta-SIM. As result the
new algorithm is able to obtain the same performance of
Beta-SIM algorithm (in terms of Classification Error and
Mean Quantization Error) and at the same time improve
the topology and stability of the generated grids (in terms
of Topographic Error). It is also compared with other well-
known Topology Preserving Maps and WeVoS versions
such as: the Self Organizing Maps (SOM), WeVoS-SOM,
Scale Invariant Map (SIM), Maximum Likelihood Hebbian
Learning-SIM (MLHL-SIM), Visualization Induced SOM
(ViSOM), Growing Neural Gas (GNG) and Beta-SIM. The
present study reports the application of these algorithms to
14 diverse real benchmark datasets from the UCI web reposi-
tory [26]. These group of 14 datasets are related to industrial,
science and economy cases of study, and contains different
combinations of number of features, number of samples and
number of classes in order to test the novel WeVoS-Beta-SIM
algorithmwith very diverse datasets and validate its behavior.

This study is organized as follows: In Section 2,
presents the main Topology Preserving Maps and detail the
well-know SIM algorithm, in Section 3 the novel ensemble

WeVoS-Beta-SIM is described in detail. Section 4 outlines
the quality measures, previously proposed in the literature,
used to evaluate different properties of topology preserving
mapping algorithms. Section 5 analyzes the capabilities of
the WeVoS-Beta-SIM algorithm by applying it to perform a
detailed study over 14 real benchmark datasets with diverse
characteristics. Finally, Section 6 contains the conclusions
and outlines future lines of research.

II. TOPOLOGY PRESERVING ALGORITHMS
Among the great variety of tools for multidimensional
data visualization, several of the most widely used are
those belonging to the family of the Topology Preserving
Maps [27]–[29]. Probably the best known among these algo-
rithms is the Self-Organizing Map (SOM) [27], [30]–[32],
based on a type of unsupervised learning called compet-
itive learning. Other types are related to the SIM algo-
rithm [11], [33], [34] which differs from the SOM as it is
designed to perform their best with radial datasets, due to the
fact that both create a mapping where each neuron captures a
‘‘pie slice’’ of the data according to the angular distribution
of the input data.

A. DIFFERENT TYPES OF TP ALGORITHM
Several extensions of SOM can be found in the literature such
as the Generative Topographic Mapping (GTM) [35]–[37]
which was developed as a probabilistic version of the SOM,
in order to overcome some of its limitations, particularly
the lack of an objective function. An important potential
application of the GTM is allowing a simpler visualization
of high-dimensional data.

Other extensions of SOM are the Topographic Product of
Experts (ToPoE) [38], and the Harmonic Topographic Map
(HaToM) [38], [39], where the topology preserving map is
created from a product of experts.

The Visualization Induced SOM (ViSOM) [16], [40], [41],
is a SOM extension proposed for the direct preservation
of the local distance information on the map, along with
the topology. The ViSOM constrains the lateral contraction
forces between units and hence regularizes the inter-unit
distances, so that distances between units in the data space are
in proportion to those in the input space. The ViSOMdoes not
only takes into account the distance between a unit’s weights
from one iteration to the next, but also the distance between
that unit and the Best Matching Unit within the whole map
(BMU). This allows the ViSOM to preserve topology by
maintaining distance between neighbours of the winner unit.

Two other interesting topology preserving models are the
Scale Invariant Map (SIM) [9], [11], [17] and the Maximum
Likelihood Scale Invariant Map (MLHL-SIM) [17], [42].
Both are designed to perform their best with radial datasets,
as each mapping neuron catch up only a radial portion of the
data based on its angular distribution. However, when SOM
is trained, it approximates a Voronoi tessellation of the input
space [27]. The Scale Invariant Map is an implementation
of the negative feedback network [43] to form a topology
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preserving mapping. The main difference between this map-
ping and the SOM [27], [31] is that this mapping is scale
invariant.

B. SCALE INVARIANT MAP
The main target of the family of Topology Preserving
Maps [27] is to produce low dimensional representations of
high dimensional datasets maintaining the topological fea-
tures of the input space.

The SIM [9], [11], [34] is an algorithm similar to
SOM [27], but training uses a method based on negative feed-
back network [43], [44]. SIM uses a neighbourhood function
and competitive learning in the same way as a SOM. SIM
model is defined by (1), (2) and (3).

Feedforward : yi =
N∑
j=1

Wijxj, (1)

Feedback: e = x −Wcyc (yc = 1), (2)

Weightsupdate: 1W i = hciη (x −Wc) , ∀i ∈ Nc, (3)

where, x is a N-dimensional input vector, and y an
M-dimensional output vector, withWij being the weight link-
ing input j to output i; e is the residual or error, η the learning
rate, Wc is the weight connected to the output winner and
hci represents the neighborhood function, which is a Gaussian
function in this case.

The input data xj is feed forward through weightsWij to the
output neurons yi, where a linear summation is performed to
obtain the activation of the output neurons (1).

Based on the previous obtained neurons activation, a win-
ner neuron is selected using the minimum Euclidean distance
(the neuron whose weight vector is closest to the input neuron
wins) or using the maximum activation (the neuron with the
highest activation wins).

After selection of an output winner, the winner, c, is
deemed to be firing (yc = 1) and all other outputs are
suppressed (yi = 0, ∀i 6= c).

The winner’s activation is then feedback through its
weights and this is subtracted from the inputs, and simple
Hebbian learning is used to update the weights of all nodes in
the neighborhood of the winner.

III. ENSEMBLES
Ensembles are meta-algorithm used to improve the per-
formance of algorithms mainly used in supervised learn-
ing [45]–[47]. An ensemble can be view as a group of experts
working together to solve a problem. Therefore, a dataset
is divided into several parts and one model is generated by
using one of these parts. Finally, the ensemblemeta-algorithm
combines resulting models to predict a result.

The main strength of ensembles is that are able to get a
good balance between small variance and small bias. The
main reason is that different classifier designs potentially
offer complementary information on the patterns to be clas-
sified and could be harnessed to improve the performance of
the selected classifier.

There are twomain approaches [11], [16], [45] to how each
of the classifiers or components of the ensemble are going to
be trained:
• Independent Training: Each model is trained without
knowledge about other models, being Bagging the most
widely used technique [47], [55].

• Coordinated trained: The training of one model takes
into account how other models were trained. This con-
cept is applied by Boosting techniques [47], [55].

Currently, the use of ensembles for not supervised learn-
ing is not strongly developed, being the main reference,
the ensembles used in topology-preserving maps. In all
cases a fusion process of the generated maps is per-
formed based on some metrics such as Fusion by Euclidean
Distance, Similarity of Voronoi Polygons, etc., however
they do not take into account the topology neighborhood.
In order to avoid such problem, in the recent years several
fusion methods were developed for topology-preserving map
fusion [11], [48]–[51].

One of the key points is that the weights of each network
in the ensemble are initialized to be able to neurons in the
same position of two networks are comparable. Therefore,
maps should be as similar as possible. Thus, all maps are
trained using the same parameters and each ensemble model
is initialized with the same values as the previous model
finished its training [11], [16].

IV. WeVoS-Beta-SIM
This section presents a novel ensemble algorithm based on
Beta-SIM TPM family, devoted to improve the stability of
the members of this family, by means of a weighted voting
system to fusion of neurons of the different Beta-SIM maps.

Beta-SIM [14] is a novel version of SIM [17], based on the
application of a family of learning rules called Beta Hebbian
Learning (BHL) [52], when they are applied to SIM.

The main difference between Beta-SIM and SIM is that in
Beta-SIM the BHL is used to update the weights of all nodes
in the neighbourhood of the winner. Then, Beta-SIM can be
defined by means of (4), (5) and (6). Where (6) is obtained
by applying BHL method to SIM to update the weights.

Feedforward : yi =
N∑
j=1

Wijxj (4)

Feedback: e = x −Wcyc (yc = 1) (5)

Weights update:

1W i = η·hci · sign (x −Wc)

·

∣∣∣|x −Wc|
α−2 (1− |x −Wc|)

β−2 (1− α

+ |x −Wc| (α + β − 2))
∣∣∣ (6)

where, x is an N-dimensional input vector, and y an
M-dimensional output vector, with Wij being the weight
linking input j to output i; e is the residual or error, η
the learning rate, Wc refers to the weights of the winning
neuron, hci represents the neighborhood function, which is a
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Gaussian function in this case, and α and β are the parameters
that determine the shape of the PDF curve

Therefore, by maximizing the likelihood of the residual
with respect to the actual distribution, it is matched the learn-
ing rule to the PDF of the residual (e).

The Beta-SIM algorithm is only stable when the absolute
value of the residuals (|e|) is lower than 1 [14], as when values
of the residuals are beyond this limit, the value of the weights
update tends towards infinity. To avoid the possibility that the
residuals have values higher than 1, the datasets should be
normalized in order to satisfy this limitation and preserve the
internal topology between dataset dimensions.

The capability of Beta-SIM algorithm to adapt to sparse
clusters or to neglect them, based on combinations of param-
eters α and β [14], provides to the units of Beta-SIM network
more freedom than other Topology Preserving Maps to adapt
to datasets, however, it also potentially adds instability to the
training. So, the use of ensembles and specifically WeVoS
fusion algorithm [15], seems to be the most appropriated
method to correct this effect.

WeVoS [25] is a weight voting ensemble system to gen-
erate fusion single TPMs. Fusion of such TPMs, generate
a final TPM that reduce the complexity and increase the
accuracy with respect to single maps without using ensemble
techniques. It has been previously successfully applied to
other well-known Topology PreservingMaps [11], [16], [25].
Beta-SIM has proved to overcome such topology preserving
algorithms in themain aspects aimed for Topology Preserving
Maps such Mean Quantization Error (MQE), Classification
Error (CE) and Topographic Error (TE) [14].

Then, in this research it is presented a novel algorithm
based on the application ofWeVoS ensemble to the Beta-SIM,
presenting a detailed study and comparison with other
well-known Topology Preserving Maps and their ensemble
versions, such as WeVoS-SOM, to analyse its impact on
aspects such as the stability and topology preservation
conditions.

WeVoS-Beta-SIM obtains a final map as combination of
different Beta-SIMmaps by fusion of the neurons in the same
position based on a weighted voting. (7) is applied for this
voting process:

Vp,m =

∑
bp,m∑M

i=1 bp,i
·

qp,m∑M
i=1 qp,i

(7)

where, Vp,m is the weight of the vote for the unit included in
mapm of the ensemble, in its position p,M is the total number
of Beta-SIMmaps, bp,m is the binary vector used for marking
the dataset entries recognized by unit in position p of map m,
and qp,m is the value of the desired quality measure for unit
in position p of map m.
b is a binary vector of the same length as data samples are

in the dataset. It is used to store the samples recognized by a
single unit.

Fusion of neurons of the different Beta-SIM maps for
WeVoS-Beta-SIM, during the training process, is done based
on a quality measure [11] calculated for each Beta-SIM map.

This quality measure is considered during the fusion process
where the weights of each neuron is proportional to the value
of such quality measure, as to modify the position of the
neuron in the fused map, the weights of each of the neurons
in that position are fed to the final map (nodes N1, N2, N3
in Fig. 1).

FIGURE 1. Schematic diagram of the weight voting in WeVoS in a 2D map.

In the ensembles, neurons in the same position of different
networks are fused, so their weights should be similar in order
to be comparable. Therefore, maps should be as similar as
possible. Thus, all maps are trained using the same param-
eters and each ensemble model is initialized with the same
values as the previous model finished its training [11], [16].

Briefly, WeVoS-Beta-SIM meta-algorithm works in the
following way:
• First of all, an ensemble of Beta-SIM maps is trained.
• Then, the chosen quality/error measure is calculated for
each neuron in all Beta-SIM maps.

• The fused map is initialized by calculating the centroids
of the neurons in the same position of all the maps,
by calculating the superposition of the ensemble.

• For each of the neurons in the fused map, the average
neuron quality and the number of total samples rec-
ognized in that position for the Beta-SIM maps, are
calculated.

• The weight of the vote for each neuron can be calculated
with this information by using (7).

• To modify the position of the neuron in the fused map,
the weights of each of the neurons in that position are
fed to the final map.

• Finally, the learning rate in each case will be the weight
of the vote for that neuron.

V. QUALITY AND TOPOLOGY MEASURES
Despite there are several quality measures that are used to
measure the capabilities of the Topology Preserving Maps,
there is not a global one [11] being some of them comple-
mentary by each one and assessing different features of the
final maps in different visual representation areas. Among all
these qualitymeasures the three ones selected in this research,
due to their complementarities, are the following:
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Classification Error (CE): Using its inherent pattern
matching characteristics, the Topology Preserving Maps in
general terms can be used for classification tasks. Intuitively,
the samples activating the same neuron of the network are
very likely to belong to the same class. When a new sample
is presented to the network, the sample can be classified in
the same class as the majority of samples activating the same
neuron belong to. A consistent behavior when classifying
samples points to a correctly trained map. Although this is
not the main function of this kind of networks, the measure
of how many samples are wrongly classified has been used,
to an extent, to assess the quality of the final map in numerous
previous studies [11].
Mean Quantization Error (MQE): MQE is related to all

forms of vector quantization and clustering algorithms. Thus,
this measure completely disregards map topology and align-
ment. MQE is computed by determining the average distance
of the dataset entries to the cluster centroids by which they
are represented. In case of SOM, the cluster centroids are the
characteristic vectors.
Topographic Error (TE): TE is the simplest of the topology

preservation measures. A dataset is also needed to calculate
this measure. For all data samples, the respective best and
second-BMUs (1st BMU and 2nd BMU) are determined.
If these BMUs are not adjacent on themap lattice, it is consid-
ered an error. Finally, the total error is normalized to a range
from 0 to 1, where 0 means perfect topology preservation.

VI. EXPERIMENTS AND RESULTS
Several experiments have been designed and performed to
investigate the capabilities of WeVoS-Beta-SIM and also to
compare it with other well-known Topology PreservingMaps
such as of SIM, Beta-SIM, SOM, WeVoS-SOM, ViSOM,
MLHL-SIM and GNG.

The first type of experiments was designed to present visu-
ally some of the main characteristics of the used algorithms
such as topology of the grid maps and spread of the grid
maps over the data. In the second type, a thoroughly analysis,
in terms of the three quality measures used in this research
(CE, MQE and TE), was performed to validate the visual
results obtained previously.

All the tests were run using a classic ten-fold cross-
validation to use the complete dataset for training and test-
ing. The ensembles were trained using one of the simplest
meta-algorithms for ensemble training: the bagging meta-
algorithm [53].

In the case of WeVoS-Beta-SIM and WeVoS-SOM, the
datasets have been reduced to 1/5 of its original size, and
a single model and an ensemble of 5 maps are calculated
for each one, comparing the performance of the models over
datasets with the same inner structure.

A. BENCHMARK DATASETS DESCRIPTION
A total of 14 diverse interesting benchmark datasets related
to industry, economy and science cases of study were
used to validate the performance of the WeVoS-Beta-SIM
algorithm. Datasets were taken from the UCI Machine
Repository [26] presenting different characteristics, such as
number of samples, features and classes, from low to high
dimensional datasets.

In Table 1, a summary of these diverse datasets is presented
in terms of sample size, features and number of classes.
Different map sizes, and combination of algorithms param-
eters where tested, presenting the best combination.

Different map sizes have been tested (20×20, 20×25 and
30 × 30), however the final maps are similar and improve-
ments in CE; MQE and TE are not significant, therefore the
best combination of parameters for each algorithm for each
experiment are presented in Table 2 (APPENDIX).

TABLE 1. Benchmark UCI datasets description in term of number of samples, features and classes.
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WeVoS-Beta-SIM andWeVoS-SOM use the same parame-
ters as their respective original models, Beta-SIM and SOM.

B. VISUALIZATION RESULTS
In this subsection, the visualization results obtained for 2 of
the previously described benchmark datasets are presented
(‘‘Iris’’ dataset and ‘‘Landsat Satellite’’ dataset). The aim is to
present visually some of the main characteristics of the used
algorithms such as topology of the grid maps and spread of
the grid maps over the data. Then, a complete analysis of the
results, in terms of three quality measures (see Section 4),
is performed over all benchmark datasets.

The 2 datasets used in this subsection were selected due
to their different levels of complexity. The first dataset is
the well-known ‘‘Iris’’ dataset (with low complexity; only
3 classes and 345 samples, 6 features) and the second one
is the ‘‘Landsat Satellite’’ dataset (with high complexity;
7 classes and 6435 samples, 36 features). The graphs pre-
sented in Fig. 2, 3, 4 and 5 illustrate the performance of each
model for each dataset, presenting the analytical results in the
next subsection (Section ‘‘5.3 Analytical results’’).

Fig. 2 and 4 represent the adaptation of each map to
its structure in representation of the dataset under analysis
(‘‘Iris’’ and ‘‘Landsat Satellite’’ datasets). It depicts the lat-
tices composing the maps embedded in a 2D input space.
Fig. 2 and Fig. 4 present the datasets projected onto their
first three principal components and the final grid maps of the
models are also embedded in the space of the three principal
components. This approach has been previously satisfactory
applied [11], [15], [40], [41], [54] in order to visually support
the analytical results presented in Tables 3-8.

Fig. 3 and 5 show the final unit map for each algorithm
where only BMUs are displayed. Each BMU of each map
is labelled based on the training inputs to which they are
reacting. This means that if one neuron (BMU) is activated
by 20 inputs samples and 19 of them belongs to class 1, this
neuron is labelled as class 1 (red circles in Fig. 4 and 5) [11].
In spite of in boundaries the BMU could easily belong to one
or other class, it only happens in the limits of class boundaries
and only a few neurons could be misclassified.

GNG is not suitable for this 2D map representation,
as some units are disregarded from the final model and
therefore the topology preservation is lost.

1) VISUALIZATION RESULTS FOR IRIS DATASET
It is easily observed in Fig. 2 that Beta-SIM and WeVoS-
Beta-SIM grid maps are more widely spread throughout the
Iris dataset (represented as magenta dots), covering the input
space better than the other algorithms. This better cover-
age over the dataset corresponds to a better MQE result
(see Table 7 APPENDIX).

However, SOM, WeVoS-SOM and ViSOM conserve the
topology of the map very well as their grid maps contains
just few twists and folds (Fig. 2d, 2e and 2g). Therefore, they
have the lowest TE values among all algorithms (see Table 8
APPENDIX).

Comparing Beta-SIM and WeVoS-Beta-SIM,
Fig. 2b and 2c show how WeVoS-Beta-SIM obtains a better
topology of the grid map versus Beta-SIM (which means
better TE results), due to the fact that WeVoS-Beta-SIM grid
map contains less twists and folds thanBeta-SIM.At the same
time, the WeVoS-Beta-SIM grid map adapts slightly better
their structure to the dataset, covering the Iris dataset more
adequately (which means a lower MQE value).

Fig. 3 shows that, in general, the WeVoS-Beta-SIM algo-
rithm (Fig. 3c) provides the map with more compact and
clearly separated groups. However, differences with the other
algorithms are minor. All algorithms obtain maps where
class 1 (red circles Fig. 3) is clearly separated from the
other 2 classes (class 2 –blue squares– and class 3 –green
triangles–). Differences between maps are only apprecia-
ble when they are compared in terms of separation of
classes 2 and 3, where WeVoS-Beta-SIM algorithm presents
these 2 classes in more compact and clearly defined groups
(Fig. 3c).

2) VISUALIZATION RESULTS FOR LANDSAT SATELLITE
DATASET
Fig. 4 shows how Beta-SIM (Fig. 4b), GNG (Fig. 4h) and
WeVoS-Beta-SIM (Fig. 4c) algorithms outperform the other
algorithms by distributing the units of their grid maps over
the Landsat Satellite dataset (represented as red dots) in the
best possible way. Units of the grid maps are close to the input
samples over the whole dataset, which leads to lower MQE
values than the other algorithms.

A similar situation occurs with SIM andMLHL-SIM algo-
rithms (Fig. 4a and 4f) as they obtained grid maps which
adapt well their structure to the dataset but not as well as the
previously mentioned algorithms.

Again, SOM,WeVoS-SOM and ViSOM algorithms are the
ones which better preserve the topology of the grid maps
(Fig. 4d, 4e and 4g) as their maps have less twist and folds
than the other algorithms. Therefore, they obtain the lowest
TE values (see Table 8 APPENDIX).

WeVos-Beta-SIM (Fig. 4c) and Beta-SIM (Fig. 4b)
algorithms obtain similar final grid maps, but WeVoS-
Beta-SIM preserves the topology of the grid map better
than the Beta-SIM algorithm. Comparing both figures
(Fig. 4b and 4c), the WeVoS-Beta-SIM grid map presents
less twists and folds than the Beta-SIM grid map, having then
lower TE values.

It can be seen in Fig. 5 that WeVoS-Beta-SIM (Fig. 5c)
provides the best visual representation through a smoother
map compared to the rest of the algorithms. Themap presents,
in general, compact and unmixed groups (there is no mix-
ing of BMUs from different classes). Beta-SIM also obtains
compact groups (Fig. 5b), but some of the neurons associ-
ated to different classes are mixed. This fact was observed
in Fig. 4 where the Beta-SIM grid map (Fig. 4b) contained
more twists and folds than WeVoS-Beta-SIM (Fig. 4c).

In the case of SOMandWeVoS-SOM (Fig. 5d and 5e), both
algorithms produced maps where groups are clearly defined,
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FIGURE 2. Algorithms’ final network grids adaptation over the Iris dataset.

however some groups present mixed classes. For instance,
in the top of both maps (Fig. 5d and 5e), class 2 (blue squares)
is divided into two groups separated by a group of class 1

(red circles). In the case of classes 2 and 6 (blues squares and
magenta asterisks respectively), in both maps several neurons
appear lost in the middle of the map.
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FIGURE 3. Algorithms’ final unit maps for Iris dataset.

3) CONCLUSIONS OF THE VISUALIZATION RESULTS
The results suggest that WeVoS-Beta-SIM provides a better
visual representation of the datasets than the other algorithms,

as it is able to widely spread its grid map covering the input
space better than the other tested models. At the same time,
WeVoS-Beta-SIM obtains grid maps with less twists and
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FIGURE 4. Algorithms’ final network grid adaptations over the Landsat Satellite dataset.

folds than the Beta-SIM algorithm, which signifies a better
topology of the map.

The improvement on visual representation, achieved by
WeVoS-Beta-SIM, is notably higher when the complexity
of the datasets increases. Using the previous examples, dif-
ferences between maps were minor for the Iris dataset (low
complexity), whereas differences were higher for the Landsat
Satellite dataset (high complexity).

C. ANALYTICAL RESULTS
In order to validate the results obtained, statistical tests for
the three quality measures were performed consisting of an
ANOVA + post-hoc analyses. The statistical results for CE,
MQE and TE are presented in Tables 3 to 5 (p-values) and
Tables 6 to 8 (average testing values ± standard deviation).
All measures presented are error measures for the test-

ing dataset, so the desired value is always as close to 0
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FIGURE 5. Algorithms final network grid adaptations over the Landsat Satellite dataset.

as possible. The CE is presented in percentage form and
normalized between 0 and 1, whereas the rest of the measures
are expressed as absolute values.

These series of experiments analyze 2 different aspects
of the novel WeVoS-Beta-SIM and the other tested
algorithms:
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• The performance of WeVoS-Beta-SIM in comparison
with the other 7 topology preserving models, in terms
of CE, MQE and TE quality measures.

• The effect of modifying the number of data samples
used during the training process for all algorithms under
study. This was done in order to emulate the addition of
noise or instability in the datasets [16].

1) ANALYSIS OF RESULTS IN TERMS OF CE
Results presented in Fig. 6 show that GNG, Beta-SIM and
WeVoS-Beta-SIM often obtain better results than the other
algorithms (SOM, ViSOM, WeVoS-SOM, SIM, MLHL-
SIM), in terms of CE values. It should be noted that these
differences in CE can only be seen when the complexity of
the datasets is high. For low complexity datasets (in this novel
research those having less than 5 classes; datasets from D1 to
D8), CE results obtained by the different algorithms were not
statistically significant (see results of Table 3 APPENDIX).

Results for this experiment confirm the conclusions
obtained by the visual representation test (figures from
Fig. 2 to 5). For example, in the case of the Iris dataset
(a dataset with low complexity), all algorithms presented
very similar final maps (Fig. 3), so similar CE values for all
algorithms were expected. In the case of the Landsat Satellite
dataset (high complexity), the WeVoS-Beta-SIM algorithm
obtained a map (Fig. 5c) with more compact groups and less
mixed classes, therefore obtaining a better CE value than the
other algorithms.

It can also be seen in Fig. 6 that when the complexity of the
datasets increases, the WeVoS-Beta-SIM obtains better CE
results than the Beta-SIM algorithm. However, when a statis-
tical test of the results is performed (Table 3 APPENDIX)
differences between CE values were not statistically
significant.

Finally, the change in CE values when the number of
samples is increased was analyzed (Fig. 6). The effect of
adding such instability in this case is not particularly evident,
as the change in CE values did not follow a clear tendency.

2) ANALYSIS OF RESULTS IN TERMS OF MQE
Results for MQE values are presented in Fig. 7, where it
is clear that SOM and WeVoS-SOM algorithms obtain the
highestMQE values for all datasets. This is expected based on
results obtained in the visual representation test (Fig. 2 and 4),
where WeVoS-SOM and SOM grid maps do not spread over
the datasets as well as the other algorithms.

The rest of the algorithms behave in a similar way, in terms
of MQE, where none of which outperform the others when
complexity of the dataset is low. However, when complexity
of the datasets increases, 2 algorithms stand out over the oth-
ers in terms ofMQE results:WeVoS-Beta-SIM and Beta-SIM
algorithms. Again, these results confirm the conclusions
obtained by the visual representation tests (Section 5.2),
where when the complexity of the datasets is high, the maps
of these algorithms cover the input space better than the other
algorithms.

Fig. 7 shows that the MQE results obtained by WeVoS-
Beta-SIM are often better than the simple model Beta-SIM,
even when the complexity of the dataset is low. However,
these differences are not always statistically significant (see
Table 4 APPENDIX).

Finally, the change in MQE values when the number of
samples is increased was analyzed. In this case, adding such
instability does not present a particular effect on the algo-
rithms, with the MQE being more dependent on the total size
of each dataset.

3) ANALYSIS OF RESULTS IN TERMS OF TE
Finally, the TE results are analyzed and presented in Fig. 8.
The TE is related with the topology of the final maps, as was
shown in the visual representation section (Section 5.2).
Based on those results, it was expected that WeVoS-SOM,
SOM and ViSOM would obtain the lowest TE, as these
algorithms produced maps with less twists and folds. Results
of Fig. 8 confirm it, but differences can only be seen when
the complexity of the dataset is high.

When complexity of the datasets increases and differences
between algorithms are clear (datasets from D8 to D14),
in terms of TE values, GNG and Beta-SIM algorithm obtain
the worst TE values. In the case of GNG, this is due to the fact
that some units of the final map are disregarded from the final
model and therefore the topology preservation is lost. In the
case of the Beta-SIM algorithm, it focuses on distributing
the units of the grid map over the dataset, so the final map
contains several twists and folds (Fig. 2b and 4b).

WeVoS-Beta-SIM (Fig. 8) consistently improves the TE
results of the simple model Beta-SIM, especially when the
complexity of the datasets increases. This means that the final
map provides a better visualization regarding the topology
preservation of the map (better TE) whereas keeping sim-
ilar MQE values. The statistical tests presented in Table 5
(APPENDIX) validate these results when complexity of the
datasets is high (as p-values are lower than the significance
level of 0.05).

The effect of adding instability by decreasing the num-
ber of samples for the training process was analyzed for
WeVoS-Beta-SIM and its simple version Beta-SIM. When
the complexity of the datasets is high, WeVoS-Beta-SIM
presents very similar TE values as the number of samples
is increases. However, Beta-SIM algorithm (Fig. 8) obtains
unstable TE values (increasing and decreasing without a clear
tendency). Therefore, it can be concluded that WeVoS-Beta-
SIM, in terms of TE, is less sensitive to noise than the
Beta-SIM algorithm. Therefore, WeVoS-Beta-SIM obtains
maps with less distortion which in turn provides a better
visual representation of the internal dataset structure.

4) CONCLUSION OF THE ANALYTICAL RESULTS
Analytical results of this subsection confirm the conclusions
obtained by the visual representation tests (Section 5.2).
When complexity of the datasets is high, WeVoS-Beta-SIM
algorithm often obtains the best MQE results,
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FIGURE 6. CE measures vs number of samples of each algorithm for each of the 14 datasets.
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FIGURE 6. (Continued.) CE measures vs number of samples of each algorithm for each of the 14 datasets.
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FIGURE 7. MQE measures vs number of samples of each algorithm for each of the 14 datasets.
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FIGURE 7. (Continued.) MQE measures vs number of samples of each algorithm for each of the 14 datasets.
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FIGURE 8. TE measures vs number of samples of each algorithm for each of the 14 datasets.
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FIGURE 8. (Continued.) TE measures vs number of samples of each algorithm for each of the 14 datasets.
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TABLE 2. Algorithms parameters for each Benchmark dataset.
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TABLE 2. (Continued.) Algorithms parameters for each Benchmark dataset.
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TABLE 3. p-values for CE (WeVoS-Beta-SIM against all algorithms).
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TABLE 4. p-values for MQE (WeVoS-Beta-SIM against all algorithms).
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TABLE 5. p-values for TE (WeVoS-Beta-SIM against all algorithms).
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TABLE 6. Average testing CE ± STD over the 14 benchmark datasets.
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TABLE 7. Average testing MQE ± STD over the 14 benchmark datasets.
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TABLE 8. Average testing TE ± STD over the 14 benchmark datasets.
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which corresponds to a more open and widely spread grid
map over the dataset.

WeVoS-Beta-SIM also obtains the best CE results pro-
viding final maps with clearly defined groups, again when
complexity of the datasets is high.

At the same time, the TE results of WeVoS-Beta-SIM are
better than those obtained by the simple model Beta-SIM,
providing to the final map a better topology preservation.
Therefore, it can be concluded that the WeVoS-Beta-SIM is
able to provide the best visual representation of the internal
structure of datasets when their complexity is high (i.e. in this
research means more than 5 classes).

Finally, in terms of stability, WeVoS-Beta-SIM is less sen-
sitive to noise in terms of TE than the simplemodel Beta-SIM,
which lead to obtain maps with less distortion effect which
in turn provides a better visual representation of the internal
dataset structure. However, CE and MQE results do not show
a clear tendency when instability is added.

VII. CONCLUSIONS AND FUTURE WORK
In this research, a novel topology-preserving model known
as WeVoS-Beta-SIM has been presented, analyzed and com-
pared with other well-known topology preserving models.
This novel algorithm aims to obtain the best topology pre-
serving summary as possible in order to improve the visual
representation of high dimensional datasets and to increase
the stability of the original model (Beta-SIM).

Therefore, the use of ensemble WeVoS when applying to
the Beta-SIM algorithm improves the visual representation
of the internal structure of high complex datasets (in this
research means more than 5 classes), generating grid maps
widely spread and that covers the input space better than
the other models (better MQE values). At the same time,
WeVoS-Beta-SIM obtains maps with less twists and folds
than the simple model Beta-SIM algorithm (better TE
values), which signifies a better topology of the map.

As can be seen in the results, the improvement on visual
representation, created by WeVoS-Beta-SIM, is notably
higher when complexity of the datasets increases. With very
simple datasets, it only makes slight improvements or can
even obtain worse results. That said, its usefulness has been
proven in the case of more complex datasets (more than
5 classes), where the extra complexity of the calculation of the
ensemble leads to the considerable increase of performance,
obtaining a better organization and visualization of the
presented information.

Results also show thatWeVoS-Beta-SIM is less sensitive to
noise in terms of TE than the simple model Beta-SIM. It leads
to maps with less distortion which in turn provides a better
visual representation of the internal dataset structure.

All the previous improvements made WeVoS-Beta-SIM a
powerful new tool for the data mining community and should
take its place among existing Topology Preserving Maps.

Future work will be focused on using WeVoS-Beta-SIM
to analyze challenging real datasets to solve problems in
the fields of big data, electric vehicles, energy efficiency,

cybersecurity, etc. Also, the use and comparison with other
ensembles will be explored for all algorithms tested in this
research.

APPENDIX
See Tables 2–8.
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