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Gene expression profiles are composed of thousands of genes at the same time, 
representing the complex relationships between them. One of the well-known con-
straints specifically related to microarray data is the large number of genes in compari-
son with the small number of available experiments or cases. In this context, the ability 
of design methods capable of overcoming current limitations of state-of-the-art algo-
rithms is crucial to the development of successful applications. This paper presents 
GENE-CBR, a hybrid model that can perform cancer classification based on microarray 
data. The system employs a case-based reasoning model that incorporates a set of fuzzy 
prototypes, a growing cell structure network and a set of rules to provide an accurate di-
agnosis. The hybrid model has been implemented and tested with microarray data be-
longing to bone marrow cases from 43 adult patients with cancer plus a group of six 
cases corresponding to healthy persons. 
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1. INTRODUCTION AND MOTIVATION 

In recent years DNA microarray technology has become a fundamental tool in ge-
nomic research, making it possible to investigate global gene expression in all aspects 
of human disease (Schena et al. 1995). Microarray technology is based on a database 
of over 40,000 fragments of genes called expressed sequence tags (ESTs), which are 
used to measure target abundance using the scanned intensities of fluorescence from 
tagged molecules hybridized to ESTs (Lipshutz et al. 1999). Since the number of 
examined genes in an experiment runs to the thousands, different data mining tech-
niques have been intensively used to analyze and discover knowledge from gene 
expression data (Piatetsky-Shapiro and Tamayo 2003). However, having so many 
fields relative to so few samples creates a high likelihood of finding false positives. 
This problem is increased if we consider the potential errors that can be present in 
microarray data. 
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For several years we have been working in the identification of techniques to auto-
mate the reasoning cycle of several complex case-based reasoning (CBR) systems 
applied to complex domains (Fdez-Riverola et al. 2005; Corchado et al. 2003; Cor-
chado et al. 2004). Based on our previous research work, we are interested in the 
development of a robust CBR system that may be employed in the study of cancer 
treatment. The goal of the decision support tool is to facilitate the construction of 
therapies, including the level of aggressiveness of treatment, to more closely match 
the underlying disease, hopefully reducing side effects in low risk cases and increas-
ing cure rates in high-risk cases. The hybrid system proposed in this paper presents a 
new synthesis that brings several artificial intelligence subfields together (fuzzy sets, 
artificial neural networks and if-then rule-sets). The retrieval, reuse, revision and 
learning stages of the CBR system use these techniques to facilitate the CBR adapta-
tion to the domain of biological discovery with microarray datasets. 

GENE-CBR is a model that can perform cancer classification based on microarray 
data. In order to store the information belonging to each sample, the system uses a 
fuzzy codification to represent the gene expression levels of each sample. This opera-
tion permits the generalization over the whole case base in order to tackle intra-
experimental and inter-experimental variations in the data. Based on the fuzzy discre-
tization of real gene expression data into a small number of fuzzy membership func-
tions, the system is capable of constructing a set of prototypes that are able to repre-
sent the main characteristics of previously ascertained classes. 

GENE-CBR employs a case-based reasoning model that incorporates a set of fuzzy 
prototypes for the retrieval of relevant genes, a growing cell structure (GCS) network 
and a proportional weighted voting algorithm for the clustering of similar patients and 
the assignation of an initial class, and a set of See5 rules used to formalize the knowl-
edge extraction to justify the results. In the experiments reported in this paper, we 
work with a database of bone marrow cases from 43 adult patients with Acute Mye-
loid Leukemia (AML) plus a group of six samples belonging to healthy persons for 
test purposes. Each case (microarray experiment) stores 22,283 ESTs corresponding 
to the expression level of thousands of genes. The data consisted of 1,025,018 
scanned intensities. 

The paper is organized as follows: Section 2 presents previous related research 
work in applying CBR to genetic/bioinformatics domains. Section 3 discusses our 
proposal in detail, showing how GENE-CBR stores the available data and explaining 
how to implement each phase of the hybrid system. Section 4 introduces the experi-
mental test bed carried out, discussing and analyzing the results obtained from differ-
ent available data. Finally, Section 5 concludes summarizing the results obtained and 
the advantages of our proposed model. 

2. RELATED WORK 

As mentioned earlier, the development of the DNA microarray technology has the 
power to generate enormous amounts of data, but it also requires sophisticated analy-
sis techniques in order to be able to extract biologically meaningful knowledge from 
the raw data. 



The fields of data mining (DM) and machine learning (ML) have been dealing 
with these kinds of tasks for a few decades. However, the data from microarrays has 
some features that make it hard to analyze. In recent years, ML and DM techniques 
have been used adequately enough to address the incipient research areas that have 
arisen in DNA microarray analysis (Piatetsky-Shapiro and Tamayo 2003). 

In this context, case-based reasoning is particularly applicable to this problem do-
main because it (i) supports a rich and evolvable representation of experi-
ences/problems, solutions and feedback; (ii) provides efficient and flexible ways to 
retrieve these experiences; and (iii) applies analogical reasoning to solve new prob-
lems (Jurisica and Glasgow 2004). CBR systems can be used to propose new solu-
tions or evaluate solutions to avoid potential problems. In the work of Aaronson et al. 
(1993) it is suggested that analogical reasoning is particularly applicable to the bio-
logical domain, partly because biological systems are often homologous (rooted in 
evolution). Moreover, biologists often use a form of reasoning similar to CBR, where 
experiments are designed and performed based on the similarity between features of a 
new system and those of known systems. 

In this sense, the work of Arshadi and Jurisica (2005) proposes a mixture of ex-
perts for case-based reasoning (MOE4CBR) developing a method that combines an 
ensemble of CBR classifiers with spectral clustering and logistic regression. This 
approach not only achieves higher prediction accuracy, but also leads to the selection 
of a subset of features that have meaningful relationships with their class labels. Pre-
viously, Costello and Wilson (2003) showed their initial work in applying a CBR 
approach to the problem of gene-finding in mammalian DNA. The results obtained 
from their experiments indicate that it is certainly feasible to do DNA-to-DNA com-
parisons in order to isolate relevant coding regions. A previous successful work in the 
same area using CBR was carried out by Shavlik (1991). 

Lieber and Bresson (2000) showed how their CASIMIR/CBR system was able to 
suggest solutions for breast cancer treatment by adapting the rules of a previous rule-
based system (CASIMIR/RBR). Jurisica and Glasgow (2004) demonstrate how case-
based reasoning can be applied to assist in analyzing genomic sequences and deter-
mining the structure of proteins. They also provide an overview of several other ap-
plications in molecular biology that have benefited from case-based reasoning. 

3. THE MODEL 

Case-based reasoning is a computational reasoning paradigm that involves the 
storage and retrieval of past experiences to solve new problems (Watson 1997). An 
advantage of CBR systems as a problem-solving paradigm is that it is applicable to a 
wide range of problems, and is particularly relevant in scientific domains, where there 
is a wealth of data but often a lack of theories or general principles. In this case, we 
have integrated data and knowledge in the GENE-CBR system to facilitate the classifi-
cation of patients with AML and the identification of the group to which a given 
patient may belong. The system solution is justified and new knowledge is incorpo-
rated into the system with each patient. 



In order to initially construct the model case base starting from the available patients 
data (lower part of Figure 1), GENE-CBR stores the gene expression levels of each 
sample in its case base. The system always deals with a fuzzy codification of the 
values stored. During the retrieval stage, the original case vectors are transformed 
into a fuzzy microarray descriptors (FMD). Each FMD is a comprehensible descriptor 
of the sample in terms of a linguistic label for each gene expression level (central part 
of Figure 1). This transformation is carried out by mean of a fuzzy discretization 

process as detailed in the following subsections. 

FIGURE 1. GENE-CBR architecture. 

Based on the FMD representation created from the case base, a set of fuzzy pat-
terns (FP) is constructed that represents the main characteristics of the a priori known 
classes (left top square in Figure 1). Each class in the system is then represented by a 
FP that holds the fuzzy codification of gene expression levels for those genes that 
were flagged as relevant for this class. Several FPs are generated from the data in a 
supervised way, each one representing a group of FMDs for each specific pathology. 

The retrieval stage in our GENE-CBR system uses the FPs in order to select the 
most representative genes given a new patient. This phase can be thought of as a gene 
selection step, in which the aim is to retrieve the list of genes that might be most in-
formative given a new sample to classify. Since it is highly unlikely that all the 
22,283 genes have significant information related to cancer classification and the 
dimensionality would be too great if all the genes were used, it is necessary to explore 
an efficient way to obtain the most suitable group of genes. In order to make this 
selection, our GENE-CBR system selects those fuzzy patterns from its case base which 



are the nearest to any new case obtained. Then, for each one of the selected FPs, the 
GENE-CBR system computes its associated DFP (a pattern which only includes the 
genes that are necessary in order to discriminate the novel instance from other differ-
ent classes). Finally, the selected genes for the new case are obtained by joining to-
gether the genes belonging to the DFPs considered. 

The adaptation of previous cases in order to solve a new FMD is accomplished in 
the reuse stage (left bottom square in Figure 1). A growing cell structures network is 
trained with the whole case base, only taking the existing cases represented by the 
genes selected in the previous stage as input. Then, the new FMD is presented to the 
GCS network and the patients most similar from a genetic point of view are retrieved. 
Based on this grouping, a proportional weighted voting mechanism is applied that 
ponders the level of similarity with the new FMD. An initial class is assigned by the 
GENE-CBR system from among the existing pathologies. 

In the revision stage (right bottom square in Figure 1) the expert is provided with 
useful data about the decision made by the system. This information contains the 
selected DFP genes, the grouping made by the GCS network, the weighting assigned 
to each class and a set of See5 (Quinlan 2000) classification rules generated from the 
most similar patients. The expert contrasts the initial prediction given by the system 
with other external information such as patient karyotype or clinical history in order 
to ascertain a revised prediction and a final diagnostic. 

Every time a new FMD is solved, the internal structure of the GENE-CBR system is 
updated (right top square in Figure 1). The new FMD is associated to its correspond-
ing class and added to the case base. The affected FP is updated and the system marks 
the most similar patients selected for future classifications. In this stage the GENE-
CBR system changes to edit-mode and the expert is permitted to update patients clas-
sification taking into account the new knowledge generated. 

3.1. Case Representation 

Input space reduction is often the key phase in the building of an accurate classifier 
(Cakmakov and Bennani 2003). Based on the fuzzy discretization method presented 
below, the proposed system is able to represent any microarray by means of its fuzzy 
microarray descriptor (FMD). This descriptor is a comprehensible description for 
each gene in terms of one from the following linguistic labels: LOW, MEDIUM and 
HIGH. Obviously, this process implies a loss of information, but this representation is 
representative from a medical point of view because practitioners are interested in 
which genes are over-expressed or under-expressed, rather than the exact level of 
expression in each gene. Therefore, the representation proposed fits the requirements 
of the system users. Moreover, from a set of FMDs the system is also able to con-
struct a prototype, known as a fuzzy pattern (FP), which characterizes and summa-
rizes the most relevant values of expression levels within this set of samples. As 
shown in Subsection 3.2, below, this ability within the system will be exploited in 
order to select a subset of relevant genes from these fuzzy patterns. 

The rest of this subsection describes the discretization schema and the construction 
of a fuzzy pattern from samples, as a basic mechanism of the proposed system in 
order to represent the information available. 



3.1.1.   Fuzzy Microarray Descriptor (FMD) 

Given a set of n features or attributes (in this work, gene expression levels),  F = 
{F1, F2, ..., Fn}, the discretization process is based on determining the membership 
function of each feature to three linguistic labels (LOW, MEDIUM, and HIGH). Then, 
each real value Fj is replaced by its three values of membership to these fuzzy labels 
(μjL, μjM and μjH, respectively), and so, a new set of 3n features, F’ = {μ1L, μ1M, μ1H, 
..., μnL, μnM, μnH} is constructed from the original set of features F.  

The membership functions to linguistic labels are defined in a similar way to those 
proposed by Pal et al. (2000). These authors suggest a useful polynomial function 
that approximates a Gaussian membership function, where its centre and amplitude 
depend on the mean and variability of the available data respectively. The original 
membership functions are considered symmetric, but, in this work we have consid-
ered asymmetric functions for the linguistic labels in the extremes (labels LOW and 
HIGH). To support this choice, it is assumed that values below the centre of member-
ship function for label LOW are low values for the feature Fj at a fuzzy degree of 1. 
The same consideration is made to the label HIGH. A graphical representation of the 
considered membership functions is shown in Figure 2. 

The values of the centers and amplitudes of each membership function can be 
computed from the original data set D. In terms of the case base of the proposed sys-
tem (see Figure 1) an element of the data set D represents a microarray. For each 
probe (associated with each EST tested by the microarray), the values of the parame-
ters of the centre and amplitude for each linguistic label can be pre-computed. This 
information must be part of the case base, concretely it must be stored in the FMD 
layer. Therefore, the FDM layer acts as the interface between each module of the 
system (retrieve, reuse, revision and retention modules) and the warehouse of the raw 
data given by the microarrays available. 

Once the three membership functions for each feature Fj have been defined, a 
threshold value Θ can be established (for example, 0.5) to discretize the original data 
in a binary way, according to any linguistic label from the labels defined - LOW, 
MEDIUM and HIGH. The discriminatory criterion for any label is simply defined by:  
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As shown in Figure 2, for concrete values of threshold Θ, specific zones of the fea-
ture domain for which none of the labels will be activated can exist (see the 
neighbour region of the intersection of membership functions of label MEDIUM and 
HIGH in Figure 2). From this fact, it must be interpreted that the specific value of the 
feature is not enough to assign it a significant linguistic label at the significance de-
gree of membership fixed by threshold Θ. On the other hand, one value can activate 
two linguistic labels simultaneously, since at the significance level given by Θ, any 
assignment of the measure to a linguistic label is significant (see, the shadow region 
of the intersection of label MEDIUM and HIGH in Figure 2). 



 
FIGURE 2. Membership functions for the linguistic labels: LOW, MEDIUM and HIGH. 

After this, any observation x belonging to D, and originally characterized by n 
numeric features F = {F1, ..., Fn}, namely x ∈ Rn, will be transformed into a new 
vector with 3n binary features (x’ ∈ {0, 1}3n). Therefore, the real value of feature Fj 
for the observation x, denoted by xj, is replaced by the three binary values given by 
Expression (1) for each linguistic label, that is to say, by the tuple 〈F’jL(xj), F’jM(xj), 
F’jH(xj)〉. In order to reduce the dimension of the transformed data, the possible status 
with respect to the three linguistic labels are unified into only one label. Given that 
the three binary values for each feature are replaced by a single label, 

" ( ) {L, LM, M, MH, H, *}.jF ∈x  If only one of the three binary values is active, the 
respective label is assigned: L (LOW), M (MEDIUM), and H (HIGH). As mentioned 
above, a unique real value can activate simultaneously two linguistic labels, so it may 
occur that two binary values are activated – the possible cases are LM (LOW and 
MEDIUM) and MH (MEDIUM and HIGH). Finally, it is also possible that one value 
does not fire any linguistic label, and then, the label * is assigned. The unifying crite-
ria is given completely by Expression (2). 
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The resulting labels for each gene of a microarray x define the FMD for this mi-
croarray and the FMD layer is responsible for computing the fuzzy descriptor. As 
mentioned above, its operation is governed by the available data (the computed FMD 
depends on the available microarrays via the pre-computed centers and amplitudes for 
each feature) and provides a higher-level representation (a knowledge representation) 
of the raw data. The knowledge representation given by the FMD layer can also be 
tuned by the user via the parameter Θ, which is introduced in Expression (1).  As the 
value of this parameter goes to 1, the computed values of the FMD will be more spe-



cific (and, simultaneously, less general). Therefore, the knowledge representation 
given by the FMDs is graded by the parameter Θ.  

The input parameter context represents the set of parameters (the centre and ampli-
tude) for the membership functions associated with each gene array probe. These 
values are computed from the whole set of microarrays available in the case base. The 
parameter Θ is the threshold value which controls the activation of a linguistic label.  

3.1.2. Fuzzy Pattern 

A fuzzy pattern (FP) is a higher concept constructed from a set of FMDs. A fuzzy 
pattern can be viewed as a prototype of the set of FMDs from which it is constructed. 
Therefore, the fuzzy pattern can capture relevant and common information about the 
gene expression levels of these FMDs. Obviously, this fact can be of interest, if the 
set of initial observations are labeled with the same kind of cancer. A fuzzy pattern 
can be constructed as follows. Given a subset of observa-
tions { }1 2

, ,...,
mi i i i ,= ⊆D x x x D  which have associated the same class label Ci, for any 

observation 1 ( ),
li l mi i i≤ ≤x  their FMD can be computed as indicated in the previous 

subsection. Therefore, for each observation, ,
li i∈x D  its associated FMD will have 

for each feature " ( )
lj iF x a label from the set {L, LM, M, MH, H, *} according to the 

Expression (2). The fuzzy pattern (corresponding to the class Ci) is constructed from 
the FMDs of each one of the initial observations, selecting those labels of features 
which are different to the label “*” and have a relative appearance frequency in set Di 
equal to or greater than a predefined ratio Π (0 < Π ≤ 1, for example, Π = 2/3).  

Formally, for each feature Fj, the appearance frequency of any label E ∈ E = {L, 
LM, M, MH, H, *} in the set Di, πij(E), can be computed according to the expression 
given by 

⎩
⎨
⎧ =

==
∑

≤≤

otherwise0
)(" if1

),(  where,
),(

)( 1
EF

E
i

E
E l

l

ml

l
ij

ij
m

iii
ij

ij
x

x
x

δ
δ

π . (3) 

Once, the frequency of each label is computed for every feature, a 3-tuple of the 
form 〈feature, label, frequency〉 is included in the fuzzy pattern of class Ci, only if its 
frequency exceeds the predefined ratio Π. Namely, the fuzzy pattern Pi is given by:  
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The predefined ratio Π controls the degree of exigency for selecting a feature as a 
member of the pattern, since the higher the value of Π, the fewer the number of fea-
tures which make up the pattern. The method presented in this section aims to con-
struct a fuzzy pattern which is representative of a collection of observations belong-
ing to the same decision class, namely, the gene expression pattern of a specific kind 
of cancer. The pattern’s quality of fuzziness is given by the fact that the labels, which 
make it up, come from the linguistic labels defined during the transformation into 



FMD of an initial observation. Moreover, if a specific label of one feature is very 
common in all the examples (belonging to the same class), this feature is selected to 
be included in the pattern and, therefore, a frequency-based criteria is used for select-
ing a feature as part of the pattern. 

The interest of a pattern is greater if the microarrays included in the list are mem-
bers of a target concept (for example, a specific kind of cancer). The input parameter 
context represents the set of parameters (the centre and amplitude) for the member-
ship functions associated with each probe of the gene array. This context is computed 
from the whole set of available microarrays (not only those belonging to a target 
concept). Finally, the input parameters Θ and Π control the FMD transformation of a 
microarray and the labels which are included in the FP, respectively. The computed 
fuzzy pattern is returned in the output parameter FP. 

3.2. Retrieval and Gene Selection 

The goal of the retrieve stage is, given a problem case (new microarray), to select a 
reduced number of genes which are relevant for classifying the new microarray into 
one of the classes of cancer represented in the case base. In order to perform this 
operation, the system computes the fuzzy distance of the new instance to the existing 
fuzzy prototypes and then selects the nearest ones to the new problem case. From 
each one of these prototypes, the system computes a unique discriminant fuzzy pat-
tern (DFP). This DFP is computed as the common genes of the initial FPs which, 
moreover, are discriminant among two different classes of cancer. The union of the 
genes belonging to each DFP will be the genes that the system returns as the relevant 
genes in order to classify the new microarray and, therefore, it will be the output of 
the retrieve stage. A major issue of the proposed model is its ability to determine the 
similarity among patterns (or FMDs). 

In order to explain how we calculate this relation we need to previously define the 
similarity between linguistic labels (represented by fuzzy sets). In this case, it has 
been considered that the fuzzy intersection of two fuzzy sets A and B (represented by 
its membership functions, μA and μB, respectively) is given by the application of the 
min operator to the two membership functions, namely, μA ∩ B = min {μA, μB,}. On 
the other hand, the cardinality operator can be replaced by the integral operator (see 
Fdez-Riverola et al. (2005) for details). In this way, the metric sim(A, B) varies be-
tween the values 0 (total dissimilarity) and 1 (total similarity). A graphical interpreta-
tion of this similarity measure is given in Figure 3. 

In this example, it is shown that the similarity of label B with regard to label A 
grows as the intersection area increases, and vice-versa. At this point, the analytical 
calculation of the integrals must be made. After some calculus, facilitated by the fact 
that the defined membership-functions are polynomial, a closed form for these inte-
grals has been determined. These calculations are out of the scope of this work, and 
they do not contribute to the explanation of our proposal. Moreover, the values of 
similarity among membership functions for the same feature can be pre-computed at 
the same time that the parameters of these functions (centers and amplitudes) are 
determined, and therefore, can be stored by the FMD layer to reduce the computa-
tional requirements. 



 
FIGURE 3. Relationship between the area below the membership function and the similitude 

of linguistic labels. 

Now, we are interested in measure the distance of a new observation x to an spe-
cific fuzzy pattern P of the form: 
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where jn is the number of variables which the pattern has. After computing the  FMD 
of the new observation x, the distance between x and the pattern P, denoted by d(P, 
x), is defined as:  

1
))·(",(

),(

1

−=
∑

≤≤ nk

k

k

k

jjj

j
j

j
n

FEsim
jd

πx
xP . (7) 

This definition assumes that the similarity of an observation x to a pattern P de-
pends on the sum of the similarity of their individual labels – evaluated by the term 
sim(Ej, F”j(x)) – and weighted by term π j – the relative frequency of the pattern’s 
label for the jth feature, Ej, in the original data set D. Then, the distance is defined as 
inversely proportional to this similarity and normalized by the number of terms of the 
pattern – to allow us to compare the same observation with patterns of different 
length – and adjusted in such a way that the range of the defined distance is between 
0 (perfect match) to ∞ (complete dissimilarity).  

Once the distance between a FMD x to a pattern P can be measured, at the retrieve 
stage the distance of the new case x to all available patterns represented in the case 
base of the GENE-CBR system is computed in order to select the nearest patterns to x. 
Since each pattern is representative of a collection of microarrays belonging to the 
same class, we can assume that the genes included in a pattern, are significant to the 
classification of any novel instance within the class associated with that pattern. 
Moreover, if several patterns are selected as possible matches for the new case, we 
are interested in those genes that allow us to discriminate the new case from one class 
with regard to the others. Here we introduce the notion of discriminant fuzzy pattern 
(DFP) with regard to a collection of fuzzy patterns. Briefly, given a collection of 
fuzzy patterns, from each FP it can be computed its DFP as a projection of the origi-
nal FP in such a way that only includes within the DFP those genes which are present 



in any other pattern of the collection but with a different label. Therefore, the DFP 
version of a FP only includes those genes that can serve to differentiate it from the 
rest of the patterns.  

3.3. Reuse and Initial Prediction 

Each time a new problem case (microarray) is presented to the system, a subset of 
relevant genes is created as explained in Subsection 3.2. This subset includes the 
genes that are defined as most relevant for the incoming patient. The next step that 
GENE-CBR accomplishes is the grouping of those cases that are most similar but only 
taking into account the genetic information provided by the selected genes. In order 
to do this, our system incorporates a growing cell structure network. 

To illustrate the working model of the GCS network inside the GENE-CBR system, 
a two-dimensional space is used, where the cells (neurons) are connected and organ-
ized into triangles (Fritzke 1993). Each cell in the network is associated with a weight 
vector, w, of the same dimension as the number of relevant genes selected in the pre-
vious step (size of the DFP array). At the beginning of the learning process, the 
weight vector of each cell is initialized with random values (Fritzke 1993). The basic 
learning process in a GCS network consists of topology modification and weight 
vector adaptations carried out.  

It is important to highlight that the final goal of the GCS network is to cluster all 
patients that are genetically similar given a selected group of genes (DFP) and with-
out taking into account their previous assigned classes. Our proposed method aims to 
find new relations between the patients even now unknown. Therefore, it is possible 
and not contradictory to group together patients suffering different (but genetically 
related) diseases. The automatic discovery of unknown relevant knowledge from 
cases is particularly useful in CBR schemes based on the k-NN algorithm (Dasarathy 
1991), where k is typically constant. The proposed GCS scheme does not rely on a 
predefined, fixed k, rather that the set of retrieved patients depends on the groupings 
of cognate FMDs in the case base. Thus, this stage could be thought of as a dynamic 
k-nearest neighbour scheme. Since such networks contain explicit distance informa-
tion, they can be used effectively in CBR to represent an indexing structure which 
indexes sets of cases in the case base and a similarity measurement between case sets 
(Azuaje et al. 2000). 

Every time a new FMD is presented to GENE-CBR, the retrieval step of our hybrid 
system filters the most relevant genes in order to construct the DFP. This group of 
genes is then employed to train the GCS network with the whole case base. From the 
trained CGS network, a new sorted vector of pairs holding the similarity of each 
selected patient with the new case, S, is generated. 

In order to apply the proportional weighted voting schema, we need to ponder the 
vote of each patient contained in vector S. To do this, a weight αj for each retrieved 
patient, kj, is calculated based on the position (pos) that it occupies in the vector S and 
the level of similarity with the target case, Simj. For this task, Expression (8) is used. 
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Therefore, the initial prediction made by GENE-CBR when a target case is pre-
sented to the system depends on both the number of selected patients (those geneti-
cally similar taking into account the genes belonging to the DPF pattern) and the level 
of similarity with the target case. The solution proposed by the system is the class 
corresponding to the disease with the highest score. 

As we can surmise, it is easy to introduce a rejection mechanism in the voting 
model. We simply use a threshold T to indicate whether the score received by the best 
matching class is sufficiently strong (passing quota). In the event that the score re-
ceived by the matching class is less than T, then the target case remains unclassified. 

3.4. Revision and Knowledge Extraction 

Every time GENE-CBR system evolves to the previous stage, one of the two fol-
lowing situations will be reached: (i) the system is able to classify the target case (so 
the assigned score exceeded the threshold T) or (ii) the system can propose a classifi-
cation but it is not as accurate as the one required (i.e. a new subtype of cancer could 
be detected). Any of these situations is reported to the expert that manually re-
examines the proposed solution in the light of the justification given by the system. 
At this stage, the system provides the expert with useful data about the decision made 
by GENE-CBR. This information contains the selected DFP gene values for the most 
similar patients, the grouping made by the GCS network, the weight assigned to each 
class and a set of See5 classification rules (Quinlan 2000) generated starting from the 
most similar patients. The set of See5 rules are used to formalize knowledge extrac-
tion and severs as result justification. Starting from the set of previously generated 
rules, a causal network representation can be extracted in order to construct a con-
nected graph for further analysis. 

Each See5 rule consists of a rule number with the purpose of identification. Fol-
lowing the rule number, some statistical information is presented in the form of (n, lift 
x) or (n/m, lift x) summarizing the performance of the rule. Similarly to a leaf, n is the 
number of training cases covered by the rule and m, if it appears, shows how many of 
them do not belong to the class predicted by the rule. The rule's accuracy is estimated 
by the Laplace ratio (n-m+1)/(n+2). The lift x is the result of dividing the rule's esti-
mated accuracy by the relative frequency of the predicted class in the training set. The 
rule is composed of one or more conditions that must all be satisfied if the rule is to 
be applicable and a class predicted by the rule. Finally, the rule shows a value be-
tween 0 and 1 indicating the confidence with which this prediction is made. 

Using this information, the expert contrasts the initial prediction given by the sys-
tem with other external information such as patient karyotype or clinical history in 
order to ascertain a revised prediction and a final diagnostic. This external informa-
tion is automatically shown to the expert by GENE-CBR because it is previously 
linked to each existing case by a Knowledge Acquisition Module (KAM). 

3.5. Knowledge Acquisition 

One of the main goals of microarray data analysis is discovery of biological 
knowledge. Every time GENE-CBR system executes the previous stage, the expert is 
provided with new knowledge and a final prediction is generated. The continuous 



learning in the system is achieved in two ways with the help of an expert. Firstly, a 
new case containing the microarray data and the assigned class is automatically stored 
in the case base for future use. Secondly, the expert can reconsider previous classifi-
cations in the light of new evidence. 

In order to help the expert acquire new information about the problem domain, 
GENE-CBR implements several tools for inspecting the knowledge base of the system. 
In this sense, the most interesting issues from a biological perspective are: (i) the 
subset of genes finally selected for the definition of the DFP pattern, that could help 
to reduce the dimensionality of gene expression data and the search for relevant (ex-
plicative) genes (ii) the clustering generated by the GCS network, that could be a 
good indicator of the occurrence of new classes or new subtypes of an existing one, 
(iii) the similarity (coherence) among the retrieved patients of each cluster, that aids 
in the definition of a sound set of characteristics that better represents each class, and 
(iv) the set of See5 rules, that can be viewed as general knowledge summarizing the 
relevance of the acquired knowledge. 

An especially interesting goal in our research team is the identification of super-
genes, that is, genes that could have extra potential in classifying different types of 
cancer. Those genes satisfy an important characteristic: they serve as predictors for 
their class and differ from other classes.  

4. RESULTS 

Bone marrow (BM) samples from 43 adult patients with newly de novo diagnosed 
AML were analyzed. All samples contained more than 80% blast cells. The median 
age was 36 years (range 14-70 years). Patients were classified according to the WHO 
classification into 4 subgroups: a) 10 APL with t(15;17) confirmed by FISH studies 
with LSI PML/RARA probe (Vysis, Stuttgart, Germany), b) 4 AML with inv(16) 
confirmed by FISH analysis with LSI CBFB probe (Vysis); c) 7 acute monocytic 
leukemias and d) 22 non-monocytic AML without recurrent cytogenetic transloca-
tions. Six BM samples from healthy donors were also included as a control group (see 
Table 1 for the distribution of samples). Each case (microarray experiment) stores 
22,283 ESTs corresponding to the expression level of thousands of genes. The data 
consisted of 1,091,867 scanned intensities. 

TABLE 1. Distribution of samples taking into account the type of cancer. 

 Healthy APL AML-inv() AML-mono AML-other 
Number of patients 6 10 4 7 22 
 

The goal of this study is to evaluate the predictive accuracy of the model proposed, 
namely, the ability of the model for classifying new samples in the pre-defined 
groups. Due to the low numbers of samples, a cross-validation strategy has been 
chosen to estimate the accuracy of the model (specifically a 4 fold cross-validation, 
considering the number of samples in group AML-Inv). 

Figure 4 shows the cross-validation error for different values of the parameters Θ 
and Π. It is used 4-fold cross-validation, dividing the set of samples at random into 
four approximately equal-sized parts. The four parts were roughly balanced, ensuring 



that the classes were distributed proportionally among each of the four parts. 4-fold 
cross-validation works as follows: we fit the model on 75% of the samples and then 
predict the class labels of the remaining 25% (the test samples). This procedure is 
repeated four times, with each part playing the role of test sample and the errors on all 
four parts averaged out to compute the overall error. 

 
FIGURE 4. Variation of the 4-fold cross-validation error depending on the model parameters. 

Figure 4 shows the results from the rank 0.75 to 1 (x axis) for the parameter Θ (the 
threshold which establishes if a linguistic label is assigned to the expression level of a 
gene within a sample) and different values (each one of the lines in graph) of the 
parameter Π (the frequency threshold which determines if the expression level of a 
gene is included in the fuzzy pattern of the class considered, depending on its fre-
quency of appearance in the available samples of such a class). The minimum error, 
7.63%, is reached at values 0.95 and 0.86, for the parameter Θ and parameter Π, 
respectively. Parameter Θ allows us to modulate the representation of a microarray in 
the form of a fuzzy microarray descriptor (FMD) as shown in Subsection 3.1.1, 
whereas parameter Π determines the ability of the system to construct fuzzy patterns 
(see Subsection 3.1.2). 

The results of the GENE-CBR system have been compared with the ones obtained 
by the PAM (Prediction Analysis of Microarrays) technique (Tibshirani 2002). This 
technique is considered as a reference technique in the field of the microarray analy-
sis and is based on an enhancement of the simple nearest prototype (centroid) classi-
fier. The method also identifies subsets of genes that best characterize each class. The 
first analysis leaves out the healthy patients and we initially compare the genes se-
lected by the GENE-CBR with regard to the ones selected by PAM software. The 
GENE-CBR is able to select 19 different genes which belong to all the discriminant 
fuzzy patterns computed by the GENE-CBR system. PAM software selects a subset of 
382 significant genes (the complete list is not shown due to its large size). The shrink-
age parameter Δ of the PAM algorithm was 2.5, since beyond this value the 4-fold 
cross-validation error increased considerably. Comparing the two lists of genes it can 
be observed that all the genes selected by the GENE-CBR system are also selected by 



the PAM software. That is, the genes selected by our system are a subset of the genes 
selected by PAM and, therefore they are significant genes (at least to the same degree 
that PAM determines them, and possibly with a higher degree of significance due to 
the reduced number of genes). 

With respect to the accuracy of the classification, Table 2 summarizes the results 
of both systems in order to classify a set of novel instances. The followed strategy 
was a 4-fold cross-validation in order to estimate the accuracy of each system. The 
results also show the standard error (in a smaller font than the average error) of the 
mean accuracy as a metric of the variability of the estimated accuracy. After perform-
ing a t-test it can be stated that differences exist between the estimated accuracy of 
the two systems. This difference is statistically significant, but not very significant 
(the p-value is 0.041). 

TABLE 2. Estimated accuracy of the GENE-CBR system and the PAM software. 

 Training 4-fold cross-validation  
(only patients with cancer) 

4-fold cross-validation  
(all the samples) 

GENE-CBR 0% 5.98 % ± 2.03 % 7.76 ± 2.17 
PAM 0% 12.42 % ± 1.41 % 17.59 ± 1.50 

 

The GENE-CBR system improves its response with regard to the PAM technique 
when the system also needs to classify healthy patients. In this case, the number of 
genes selected by the GENE-CBR system increases to 59 genes, whereas the genes 
selected by PAM total about 500 genes. Moreover, the difference between the mean 
accuracy is statistically very significant since the p-value is less than 0.01.  

5. CONCLUSIONS 

This paper presents the successful implementation of a CBR system for cancer di-
agnosis using microarray datasets. The CBR systems proposed support rich and ev-
olvable representations of experiences, solutions and feedback. The biologist often 
uses a form of reasoning similar to CBR, whereby experiments are designated and 
performed based on the similarity between features of a new situation and those of 
known experiences. GENE-CBR allows the use of combined techniques that can be 
used for gene selection, clustering, knowledge extraction and prediction. 

The results obtained from the empirical studies carried out are very promising and 
they back up the idea that CBR systems can offer a number of advantages in the mi-
croarray domain. Concretely, GENE-CBR allows us to obtain a more general knowl-
edge about the problem domain and to gain a deeper insight into the importance of 
each gene related to each pathology. Moreover, we show how our GENE-CBR system 
outperforms the results obtained by specific classification techniques such as PAM, 
when applied to our AML experimental data. Moreover, statistical tests carried out 
show that this difference is significant. 
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